python构建随机森林回归模型,怎么设置交叉验证?
时间: 2024-05-16 13:15:38 浏览: 95
在Python中,我们可以使用Scikit-learn库来构建随机森林回归模型,并设置交叉验证。具体步骤如下:
1. 导入所需的库和数据集
```python
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
data = pd.read_csv('data.csv')
X = data.drop(['target_variable'], axis=1)
y = data['target_variable']
```
2. 初始化随机森林回归模型
```python
rf = RandomForestRegressor(n_estimators=100, random_state=42)
```
3. 设置交叉验证
```python
scores = cross_val_score(rf, X, y, cv=5, scoring='neg_mean_squared_error')
```
其中,cv参数表示交叉验证的次数,scoring参数表示评估指标,这里使用负均方误差(neg_mean_squared_error)作为评估指标。
4. 计算交叉验证的结果
```python
print('交叉验证结果: ', -scores.mean())
```
这里使用负数均方误差的平均值作为交叉验证的结果。
完整代码如下:
```python
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
data = pd.read_csv('data.csv')
X = data.drop(['target_variable'], axis=1)
y = data['target_variable']
rf = RandomForestRegressor(n_estimators=100, random_state=42)
scores = cross_val_score(rf, X, y, cv=5, scoring='neg_mean_squared_error')
print('交叉验证结果: ', -scores.mean())
```
阅读全文