在qgraphicsview中用此函数遍历多个点集for (auto it : m_pts) { /*int rect_x = it.x() - RECT_SIZE/4 ; int rect_y = it.y() - RECT_SIZE /4; cv::Rect rect(rect_x, rect_y, RECT_SIZE, RECT_SIZE); rect = rect & cv::Rect(0, 0, ImgBin.cols, ImgBin.rows); for (int nRow = rect_y - rect.height; nRow < rect_y + rect.height; nRow++) { for (int nCol = rect_x - rect.width; nCol < rect_x + rect.width; nCol++) {*/ ImgBin.row(it.y()).data[it.x()] = 255; }在超出图片的地方会进入断点

时间: 2024-03-28 21:42:00 浏览: 22
根据您提供的代码,可能是由于循环中的 rect 超出了图像的范围,导致在超出图片的地方进入了断点。 您可以在循环前加入判断,确保 rect 不会超出图像的范围。例如: ```cpp for (auto it : m_pts) { int rect_x = it.x() - RECT_SIZE / 4; int rect_y = it.y() - RECT_SIZE / 4; cv::Rect rect(rect_x, rect_y, RECT_SIZE, RECT_SIZE); rect = rect & cv::Rect(0, 0, ImgBin.cols, ImgBin.rows); for (int nRow = rect.y; nRow < rect.y + rect.height; nRow++) { for (int nCol = rect.x; nCol < rect.x + rect.width; nCol++) { ImgBin.row(nRow).data[nCol] = 255; } } } ``` 这里,使用 `cv::Rect` 的 `&` 运算符来确保 `rect` 不会超出图像的范围。同时,在循环中使用 `rect.x` 和 `rect.y` 作为起始值,确保不会越界。
相关问题

for (auto it : m_pts) { for (int nRow = it.y(); nRow < it.y()+4; nRow++) { for (int nCol = it.x(); nCol < it.x()+4; nCol++) { ImgBin.row(nRow).data[nCol] = 255; } } }这个函数将点集遍历,但我只想让我点下的点设为白色,该如何修改

如果你只想让点集中的点设为白色,可以使用以下代码: ```c++ for (auto it : m_pts) { ImgBin.row(it.y()).data[it.x()] = 255; } ``` 这将只在每个点的位置上将像素设置为白色。如果你想要将每个点周围的 4x4 区域都设置为白色,可以使用以下代码: ```c++ for (auto it : m_pts) { for (int nRow = it.y(); nRow < it.y()+4; nRow++) { for (int nCol = it.x(); nCol < it.x()+4; nCol++) { if (nRow >= 0 && nRow < ImgBin.rows && nCol >= 0 && nCol < ImgBin.cols) { ImgBin.row(nRow).data[nCol] = 255; } } } } ``` 这将在每个点的周围 4x4 区域内将像素设置为白色。需要注意的是,如果点集中的某个点位于图像边界上,那么周围的某些像素可能不在图像范围内,因此需要添加判断语句来避免访问越界。

void Caliper::SearchCaliperPath() { assert(!input_image_.empty() && input_image_.channels() == 1); //1. 初始化卡尺路径直线方程 angle = std::atan(k); // b = y - kx b = center.y - k * center.x; //2. 求取搜索起始点 min_x = center.x - len * std::cos(angle) * 0.5; if (min_x < 0) return; max_x = center.x + len * std::cos(angle) * 0.5; //3. 从起始点搜索,保存卡尺路径点集 path.clear(); pathPixelValue.clear(); // y = kx + b; double y = 0; for (int i = static_cast<int>(min_x); i < static_cast<int>(max_x); ++i) { y = i * k + b; path.push_back(cv::Point2d(i, y)); pathPixelValue.push_back(input_image_.at<uchar>(static_cast<int>(y), i)); } }//SearchCaliperPath 用opencvsharp4.6编写c#函数

这是一个使用 OpenCVSharp 4.6 编写的 C# 函数,用于搜索卡尺路径。具体来说: 1. 首先检查输入图像是否为空且通道数为1。 ```csharp Assert.IsFalse(inputImage.Empty()); Assert.AreEqual(inputImage.Channels(), 1); ``` 2. 初始化卡尺路径的直线方程,其中 k 表示斜率,b 表示截距。斜率 k 的计算采用 Math.Atan 函数,截距 b 的计算采用中心点坐标和斜率 k。 ```csharp var angle = Math.Atan(k); var b = center.Y - k * center.X; ``` 3. 求取搜索起始点,即卡尺路径的左右端点。左端点 min_x 的计算采用中心点坐标、卡尺长度 len 和角度 angle 计算得出。如果 min_x 小于0,则直接返回。右端点 max_x 的计算与 min_x 相似。 ```csharp var min_x = center.X - len * Math.Cos(angle) * 0.5; if (min_x < 0) return; var max_x = center.X + len * Math.Cos(angle) * 0.5; ``` 4. 从起始点开始搜索卡尺路径,保存路径点集和像素值。具体来说,从 min_x 到 max_x 循环,对于每个 x 坐标,计算出对应的 y 坐标(y = kx + b),然后将该点加入路径点集 path 中,并在输入图像中取出该点的像素值,加入 pathPixelValue 中。 ```csharp var path = new List<Point2d>(); var pathPixelValue = new List<byte>(); for (var i = (int)min_x; i < (int)max_x; ++i) { var y = i * k + b; path.Add(new Point2d(i, y)); pathPixelValue.Add(inputImage.Get<byte>((int)y, i)); } ``` 注意,函数中使用的 Point2d 和 byte 类型都是 OpenCVSharp 中定义的数据类型。

相关推荐

class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method这是PointnetSAModuleMSG的代码,而这是selfattention的代码:class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x);我想将SelfAttention作为PointnetSAModuleMSG的子模块,我是为了加入SA注意力机制,所以需要对PointnetSAModuleMSG进行修改。我想在每个SA模块中添加一个注意力机制,以使得网络可以更好地聚焦于重要的点。具体实现方式是在每个SA模块的最后一层MLP后加入一个Self-Attention层,(如SelfAttention类所示)用于计算每个点的注意力分数。你可以给我写出详细的修改代码吗?

加速这一段代码#include <thread> #include <mutex> // 用于保护m_vpdEdgePoints和m_vdEdgeGradient的锁 std::mutex g_mutex; void process_edges(const cv::Mat& RoiMat, const std::vectorcv::Point2d& m_vpdEquinoxPoints, const double m_dMeasureLength, const double m_dMeasureHeight, const double m_dSigma, const int m_nThresholdCircle, const int m_nTranslationCircle, const std::vector<double>& m_vdMeasureAngle, std::vectorcv::Point2d& m_vpdEdgePoints, std::vector<double>& m_vdEdgeGradient, int start_idx, int end_idx, Extract1DEdgeCircle Extract1DEdgeCircle) { std::vector<Edge1D_Result> edges; for (int i = start_idx; i < end_idx; i++) { edges = Extract1DEdgeCircle.Get1DEdge(RoiMat, m_vpdEquinoxPoints[i], m_dMeasureLength, m_dMeasureHeight,m_vdMeasureAngle[i], m_dSigma, m_nThresholdCircle, m_nTranslationCircle == 1 ? Translation::Poisitive : Translation::Negative, Selection::Strongest); // 使用锁保护m_vpdEdgePoints和m_vdEdgeGradient //std::lock_guardstd::mutex lock(g_mutex); for (int j = 0; j < edges.size(); j++) { m_vpdEdgePoints.push_back(edges[j].m_pdEdgePoint); m_vdEdgeGradient.push_back(edges[j].m_dGradient); } } } const int num_threads = 10; std::vectorstd::thread threads(num_threads); std::vector<std::vectorcv::Point2d> edge_points(num_threads); std::vector<std::vector<double>> edge_gradients(num_threads); for (int i = 0; i < num_threads; i++) { int start_idx = i * m / num_threads; int end_idx = (i + 1) * m / num_threads; threads[i] = std::thread(process_edges, std::ref(RoiMat), std::ref(m_vpdEquinoxPoints), m_dMeasureLength, m_dMeasureHeight, m_dSigma, m_nThresholdCircle, m_nTranslationCircle, std::ref(m_vdMeasureAngle), std::ref(edge_points[i]), std::ref(edge_gradients[i]), start_idx, end_idx, Extract1DEdgeCircle); } for (int i = 0; i < num_threads; i++) { threads[i].join(); // 合并结果 m_vpdEdgePoints.insert(m_vpdEdgePoints.end(), edge_points[i].begin(), edge_points[i].end()); m_vdEdgeGradient.insert(m_vdEdgeGradient.end(), edge_gradients[i].begin(), edge_gradients[i].end()); }

最新推荐

recommend-type

原理详解_三点解算两个坐标系之间的旋转矩阵和平移向量

已知不共线的三点在两个坐标系下面的坐标,求解 两个坐标系的转换参数,精度可满足一般程度上的定位需求。步骤清楚,可直接上手code
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。