遗传算法优化公交调度代码
时间: 2023-11-09 12:06:15 浏览: 86
遗传算法是一种基于自然选择和遗传遗传机制的优化算法,可以用于公交调度问题的优化。下面是一个简单的基于遗传算法的公交调度代码:
1. 定义适应度函数:适应度函数是用来评价每个个体解的好坏程度的函数,对于公交调度问题,可以定义适应度函数为每个公交车的平均等待时间最小化。
2. 初始化种群:根据问题需求,随机生成一组初始解作为种群。
3. 选择操作:通过轮盘赌选择或其他选择方式从种群中选择父代个体。
4. 交叉操作:对于选中的父代个体,进行交叉操作,生成新的子代个体。
5. 变异操作:对于新生成的子代个体,进行一定概率的变异操作,生成最终的个体解。
6. 评价适应度:对于每个个体解,计算其适应度值。
7. 选择优秀个体:根据适应度值,选择最优秀的个体解,作为下一代种群的父代。
8. 终止条件:根据实际需求,设置终止条件(如达到最大迭代次数,或达到一定的适应度值等)。
完整的代码实现可以参考以下步骤:
1.定义适应度函数
```python
def fitness(solution):
# 计算每个公交车的平均等待时间
# 返回平均等待时间的倒数作为适应度值,因为我们要最小化等待时间
return 1 / average_wait_time(solution)
```
2.初始化种群
```python
def init_population(pop_size, num_buses, num_stops):
population = []
for i in range(pop_size):
solution = []
for j in range(num_buses):
bus_schedule = random_schedule(num_stops)
solution.append(bus_schedule)
population.append(solution)
return population
```
3.选择操作
```python
def roulette_wheel_selection(population, fitnesses):
total_fitness = sum(fitnesses)
selection_probs = [fitness / total_fitness for fitness in fitnesses]
selected_index = np.random.choice(len(population), p=selection_probs)
return population[selected_index]
```
4.交叉操作
```python
def crossover(parent1, parent2):
point = np.random.randint(1, len(parent1) - 1)
child1 = parent1[:point] + parent2[point:]
child2 = parent2[:point] + parent1[point:]
return child1, child2
```
5.变异操作
```python
def mutate(solution, mutation_prob):
for i in range(len(solution)):
if np.random.rand() < mutation_prob:
solution[i] = random_schedule(len(solution[i]))
return solution
```
6.评价适应度
```python
def evaluate_population(population):
return [fitness(solution) for solution in population]
```
7.选择优秀个体
```python
def select_best(population, fitnesses):
best_index = np.argmax(fitnesses)
return population[best_index]
```
8.终止条件
```python
def termination_condition(iteration, max_iterations, target_fitness=None):
if iteration >= max_iterations:
return True
if target_fitness is not None and fitnesses[0] >= target_fitness:
return True
return False
```
完整的遗传算法优化公交调度代码示例如下:
```python
import numpy as np
# 定义公交调度问题相关参数
NUM_BUSES = 5
NUM_STOPS = 10
MUTATION_PROB = 0.1
POP_SIZE = 50
MAX_ITERATIONS = 100
# 初始化公交车的时刻表
def random_schedule(num_stops):
return np.random.permutation(num_stops)
# 计算每个公交车的平均等待时间
def average_wait_time(solution):
stops_per_bus = [set(schedule) for schedule in solution]
wait_times = np.zeros(NUM_STOPS)
for i in range(NUM_STOPS):
buses_at_stop = [b for b, s in enumerate(stops_per_bus) if i in s]
if len(buses_at_stop) > 0:
wait_times[i] = np.sum([np.abs(j - i) for j in stops_per_bus[buses_at_stop]])
return np.mean(wait_times)
# 定义适应度函数
def fitness(solution):
return 1 / average_wait_time(solution)
# 初始化种群
def init_population(pop_size, num_buses, num_stops):
population = []
for i in range(pop_size):
solution = []
for j in range(num_buses):
bus_schedule = random_schedule(num_stops)
solution.append(bus_schedule)
population.append(solution)
return population
# 选择操作
def roulette_wheel_selection(population, fitnesses):
total_fitness = sum(fitnesses)
selection_probs = [fitness / total_fitness for fitness in fitnesses]
selected_index = np.random.choice(len(population), p=selection_probs)
return population[selected_index]
# 交叉操作
def crossover(parent1, parent2):
point = np.random.randint(1, len(parent1) - 1)
child1 = parent1[:point] + parent2[point:]
child2 = parent2[:point] + parent1[point:]
return child1, child2
# 变异操作
def mutate(solution, mutation_prob):
for i in range(len(solution)):
if np.random.rand() < mutation_prob:
solution[i] = random_schedule(len(solution[i]))
return solution
# 评价适应度
def evaluate_population(population):
return [fitness(solution) for solution in population]
# 选择优秀个体
def select_best(population, fitnesses):
best_index = np.argmax(fitnesses)
return population[best_index]
# 终止条件
def termination_condition(iteration, max_iterations, target_fitness=None):
if iteration >= max_iterations:
return True
if target_fitness is not None and fitnesses[0] >= target_fitness:
return True
return False
# 遗传算法优化公交调度
def optimize_bus_schedule():
# 初始化种群
population = init_population(POP_SIZE, NUM_BUSES, NUM_STOPS)
# 开始迭代优化
for i in range(MAX_ITERATIONS):
# 评价适应度
fitnesses = evaluate_population(population)
# 选择优秀个体
best_solution = select_best(population, fitnesses)
# 输出当前迭代的最优解
print("Iteration {}: Best Fitness = {}".format(i, fitness(best_solution)))
# 判断终止条件
if termination_condition(i, MAX_ITERATIONS):
break
# 新一代种群
new_population = [best_solution]
while len(new_population) < POP_SIZE:
# 选择父代个体
parent1 = roulette_wheel_selection(population, fitnesses)
parent2 = roulette_wheel_selection(population, fitnesses)
# 交叉操作
child1, child2 = crossover(parent1, parent2)
# 变异操作
child1 = mutate(child1, MUTATION_PROB)
child2 = mutate(child2, MUTATION_PROB)
# 添加子代个体到新一代种群
new_population.append(child1)
new_population.append(child2)
# 更新种群
population = new_population
# 返回最优解
return best_solution
```
阅读全文