[Matlab科学计算] 有限元法求二阶非齐次线性微分方程源代码
时间: 2023-07-07 09:04:58 浏览: 336
以下是用有限元法求解二阶非齐次线性微分方程的 Matlab 源代码:
```matlab
clc;
clear all;
close all;
% 定义常数和参数
L = 1;
n = 10;
h = L/n;
x = linspace(0,L,n+1);
% 定义系数矩阵
A = [1/h^2 + 1/2, -2/h^2, 1/h^2 - 1/2;
1/h, 0, -1/h;
1/2, -1, 1/2];
% 定义右端项的函数
f = @(x) sin(pi*x);
% 定义边界条件
u0 = 0;
uL = 0;
% 初始化向量和矩阵
F = zeros(n-1,1);
U = zeros(n+1,1);
% 计算右端项
for i=1:n-1
F(i) = integral(@(x)(A(3,1)*sin(pi*x)+A(3,2)*cos(pi*x)+A(3,3)*f(x)).*((x>=x(i)&x<x(i+1)).*x-x(i))./h, x(i), x(i+1));
end
% 处理边界条件
F(1) = F(1) - u0*A(2,1);
F(n-1) = F(n-1) - uL*A(2,3);
% 解线性方程组
U(2:n) = A(1,1)\F;
% 处理边界条件
U(1) = u0;
U(n+1) = uL;
% 输出结果
plot(x,U,'-o');
xlabel('x');
ylabel('u(x)');
title('Finite Element Method Solution of a Linear Differential Equation');
```
这个程序的输出是一个图像,其中显示了通过有限元法求解的微分方程的近似解。
阅读全文
相关推荐















