X_train = torch.Tensor(X_train).long() X_train = torch.zeros(X_train.size(0), 122).scatter_(1, X_train, 1)这两句代码什么意思

时间: 2023-05-25 18:05:36 浏览: 61
这两句代码首先将`X_train`转换为`torch.Tensor`类型,并将其显示为长整型(`long`)。然后,它创建了一个大小为`(X_train.size(0), 122)`的全零张量,并使用`scatter_`函数在每个样本中标记其对应的特征。具体来说,`scatter_(1, X_train, 1)`将每行中特定位置的值设置为`1`,该位置由`X_train`中的值指定。这样能够将原始特征矩阵转换为一组one-hot向量,每个向量都代表一个特征。
相关问题

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

在这段代码中,可能存在以下错误: 1. 缺少必要的库或模块。 2. training_set 的文件路径是否正确。 3. training_set 的数据处理是否正确。 4. LSTM 模型的定义是否正确。 5. 训练和预测的代码是否正确。 下面是修改后的代码: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler # 读取数据 training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values # 定义数据处理函数 def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) # 对数据进行归一化处理 sc = MinMaxScaler() training_data = sc.fit_transform(training_set) # 定义窗口长度 seq_length = 1 # 对数据进行窗口划分 x, y = sliding_windows(training_data, seq_length) # 划分训练集和测试集 train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) # 定义 LSTM 模型 class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out # 定义训练参数 num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 # 实例化 LSTM 模型 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) # 定义损失函数和优化器 criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # 训练模型 runn = 10 Y_predict = np.zeros((runn, len(dataY))) for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() # 对结果进行反归一化 data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(Y_predict, axis=0) Y_Predict_T = np.transpose(np.array(Y_Predict)) ```

帮我看看这段代码报错原因: Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 274, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 48, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/losses.py", line 38, in forward index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1) RuntimeError: Expected index [128, 1] to be smaller than self [16, 8] apart from dimension 1 部分代码如下:cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) # index.scatter_(1, target.data.view(-1, 1), 1) index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight)

这个错误是由于 `index` 张量的大小与 `output` 张量的大小不匹配导致的。在你的代码中,`index` 张量的大小是 `[batch_size, classes]`,即每个样本的预测标签的 one-hot 编码,而 `output` 张量的大小是 `[batch_size, features]`,即每个样本的特征向量的大小。因此,如果在 `index.scatter_()` 操作中使用了一个大小为 `[batch_size, 1]` 的张量,则会导致上述错误。 要解决这个问题,你可以将 `index` 的大小更改为 `[batch_size, num_classes]`,其中 `num_classes` 是分类数量。你可以在 `LDAMLoss` 的 `__init__` 方法中将 `num_classes` 作为参数并存储在实例变量中,然后在 `forward` 方法中使用它来创建 `index` 张量。例如: ``` class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, num_classes=10): super(LDAMLoss, self).__init__() self.num_classes = num_classes m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1) index = index[:, :self.num_classes] # 取前 num_classes 列 index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) ``` 然后在使用 `LDAMLoss` 时,你需要将 `num_classes` 参数传递给它。例如: ``` num_classes = len(train_loader.dataset.classes) criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30, num_classes=num_classes) ```

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(j) file_path = os.path.join(folder_path, file_name) matrix = np.load(file_path) x[j] = torch.from_numpy(matrix).unsqueeze(0) #y = torch.cat((torch.zeros(20), torch.ones(20))) #y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long))) y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long)), dim=0) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs = x[i] labels = y[i] optimizer.zero_grad() outputs = net(inputs) #loss = criterion(outputs, labels) loss = criterion(outputs.unsqueeze(0), labels.unsqueeze(0)) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training')报错RuntimeError: Expected target size [1, 2], got [1]怎么修改?

pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((-1, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) classes=7, cls_num_list = np.zeros(classes) for , label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) criterion_val = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) targets = torch.tensor(targets).to(torch.long) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm(model.parameters(), CLIP_GRAD) # 梯度裁剪,防止梯度爆炸 scaler.step(optimizer) # 更新下一次迭代的scaler scaler.update() 报错:File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 53, in forward return F.cross_entropy(logit, target, weight=self.weight) File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/functional.py", line 2824, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index) RuntimeError: multi-target not supported at /pytorch/aten/src/THCUNN/generic/ClassNLLCriterion.cu:15

import numpy as np import torch import torch.nn as nn import torch.optim as optim class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def begin_state(self, batch_size): return torch.zeros(batch_size, self.hidden_size) # 定义数据集 data = """he quick brown fox jumps over the lazy dog's back""" # 定义字符表 tokens = list(set(data)) tokens.sort() token2idx = {t: i for i, t in enumerate(tokens)} idx2token = {i: t for i, t in enumerate(tokens)} # 将字符表转化成独热向量 one_hot_matrix = np.eye(len(tokens)) # 定义模型参数 input_size = len(tokens) hidden_size = 128 output_size = len(tokens) learning_rate = 0.01 # 初始化模型和优化器 model = RNN(input_size, hidden_size, output_size) optimizer = optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.NLLLoss() # 训练模型 for epoch in range(1000): model.train() state = model.begin_state(1) loss = 0 for ii in range(len(data) - 1): x_input = one_hot_matrix[token2idx[data[ii]]] y_target = torch.tensor([token2idx[data[ii + 1]]]) x_input = x_input.reshape(1, 1, -1) y_target = y_target.reshape(1) pred, state = model(torch.from_numpy(x_input), state) loss += criterion(pred, y_target) optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")代码缩进有误,请给出正确的缩进

import numpy as np import torch import torch.nn as nn import torch.optim as optim class RNN(nn.Module): def init(self, input_size, hidden_size, output_size): super(RNN, self).init() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def begin_state(self, batch_size): return torch.zeros(batch_size, self.hidden_size) #定义数据集 data = """he quick brown fox jumps over the lazy dog's back""" #定义字符表 tokens = list(set(data)) tokens.sort() token2idx = {t: i for i, t in enumerate(tokens)} idx2token = {i: t for i, t in enumerate(tokens)} #将字符表转化成独热向量 one_hot_matrix = np.eye(len(tokens)) #定义模型参数 input_size = len(tokens) hidden_size = 128 output_size = len(tokens) learning_rate = 0.01 #初始化模型和优化器 model = RNN(input_size, hidden_size, output_size) optimizer = optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.NLLLoss() #训练模型 for epoch in range(1000): model.train() state = model.begin_state(1) loss = 0 for ii in range(len(data) - 1): x_input = one_hot_matrix[token2idx[data[ii]]] y_target = torch.tensor([token2idx[data[ii + 1]]]) x_input = x_input.reshape(1, 1, -1) y_target = y_target.reshape(1) pred, state = model(torch.from_numpy(x_input), state) loss += criterion(pred, y_target) optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")代码运行报错,请修改

import torch import os import torch.nn as nn import torch.optim as optim import numpy as np import random class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 16, kernel_size=3,stride=1) self.pool = nn.MaxPool2d(kernel_size=2,stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3,stride=1) self.fc1 = nn.Linear(32 * 9 * 9, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 9 * 9) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) folder_path = 'random_matrices2' # 创建空的tensor x = torch.empty((40, 1, 42, 42)) # 遍历文件夹内的文件,将每个矩阵转化为tensor并存储 for j in range(40): for j in range(40): file_name = 'matrix_{}.npy'.format(j) file_path = os.path.join(folder_path, file_name) matrix = np.load(file_path) x[j] = torch.from_numpy(matrix).unsqueeze(0) #y = torch.cat((torch.zeros(20), torch.ones(20))) y = torch.cat((torch.zeros(20, dtype=torch.long), torch.ones(20, dtype=torch.long))) for epoch in range(10): running_loss = 0.0 for i in range(40): inputs = x[i] labels = y[i] optimizer.zero_grad() outputs = net(inputs) #loss = criterion(outputs, labels) loss = criterion(outputs.unsqueeze(0), labels.unsqueeze(0)) loss.backward() optimizer.step() running_loss += loss.item() print('[%d] loss: %.3f' % (epoch + 1, running_loss / 40)) print('Finished Training') 上述代码报错:RuntimeError: Expected target size [1, 2], got [1],怎么修改?

最新推荐

海尔智能电视刷机数据 U49A5 机编DH1W80A0305 务必确认机编一致 强制刷机 整机USB升级主程序

务必确认机身编号与文件名机编一致,如不一致,请勿下载 机身编号一般在机子背面的贴纸上 升级方法: 1、下载数据,压缩包解压,将“Haier638Upgrade.bin”文件拷贝到U盘根目录下(U盘要求使用FAT32格式,建议4G-8G的品牌U盘,刷机成功率会高) 2、电视关机拔下电源,插入U盘,按住机身按键板上的“菜单”键不放,插电开机,直到LED灯开始闪表示升级正在进行,升级成功后机器会自动重起。 3、重启之后,重新交流上电,升级完成。 注意: 1、升级到结束,大约需要8-30分钟,中途绝对不能断电 2、升级重启第一次进入系统,请等完全正常进入开机桌面之后,才能拨下U盘

c语言c++项目源代码_c语言对自己电脑系统测试.rar

**C语言电脑系统测试项目** 本项目是一个基于C语言的实用工具,旨在为您的电脑系统提供全面的性能测试与评估。通过执行一系列精心设计的测试用例,该工具能够评估您的电脑在处理器速度、内存管理、磁盘性能以及网络连接等方面的表现。 项目的核心功能包括: 1. **处理器性能测试**:通过执行复杂的算法和计算任务,评估处理器的运算速度和效率。 2. **内存测试**:检查内存分配、读写速度和稳定性,确保系统的内存管理达到最佳状态。 3. **磁盘性能测试**:评估硬盘或固态硬盘的读写速度、I/O性能和文件系统效率。 4. **网络性能测试**:测量网络连接的速度和稳定性,包括上传和下载速度以及延迟。 此外,该项目还提供了详细的测试报告功能,帮助您全面了解系统的优势和潜在瓶颈。测试结果以直观易懂的图表和数字形式呈现,便于分析和解读。 此项目采用模块化设计,方便您进行二次开发和定制,以满足特定需求。无论是硬件评测爱好者还是系统管理员,都能从该项目中受益良多。

pypy3.8-v7.3.6rc3-s390x.tar.bz2

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。

强化学习的Q-Learn算法ppt资源

强化学习的主要算法:包括Q-learning、SARSA、DQN、A3C、TRPO、PPO和SAC等。这些算法各有特点,适用于不同的场景和任务。例如,Q-learning和SARSA是基于值函数的强化学习算法,旨在学习最优策略以最大化累积奖励;而DQN则是深度强化学习算法,使用神经网络来估计值函数,并通过反向传播算法更新网络参数。 强化学习在多个领域具有广泛应用。在自动驾驶系统中,强化学习可以帮助车辆感知周围环境并做出决策,实现自主行驶。在医疗领域,强化学习可以用于辅助医生进行病例分析、诊断和治疗方案制定,提高医疗服务的准确性和效率。此外,强化学习还在智能物流和仓储管理、金融投资决策等领域发挥着重要作用。

工作汇报 年终总结28.pptx

封面 标题:基于物联网的智能家居系统年度总结 报告人信息:[姓名]、[职位/角色]、[所属机构/公司] 日期:[具体日期] 目录 引言 年度工作回顾 系统进展与亮点 技术创新与应用 市场反馈与用户评价 存在问题与挑战 未来展望与计划 结束语与感谢 一、引言 简要介绍智能家居系统的重要性和发展趋势 回顾本年度的工作目标和重点 二、年度工作回顾 系统建设与维护 完成的项目与里程碑 系统稳定性与可靠性提升 团队建设与培训 团队成员构成与职责 培训与技能提升活动 合作伙伴与资源整合 与供应商、合作伙伴的合作情况 资源整合与利用 三、系统进展与亮点 功能扩展与优化 新增功能介绍与效果评估 现有功能的优化与改进 用户体验提升 界面设计与交互优化 用户反馈与改进措施 四、技术创新与应用 物联网技术的应用 传感器与通信技术的升级 大数据分析与应用 智能家居的智能化管理 自动化控制与节能策略 安全防护与预警系统 五、市场反馈与用户评价 市场反馈分析 市场需求与竞争态势 市场占有率与增长趋势 用户评价总结 用户满意度调查结果

ExcelVBA中的Range和Cells用法说明.pdf

ExcelVBA中的Range和Cells用法是非常重要的,Range对象可以用来表示Excel中的单元格、单元格区域、行、列或者多个区域的集合。它可以实现对单元格内容的赋值、取值、复制、粘贴等操作。而Cells对象则表示Excel中的单个单元格,通过指定行号和列号来操作相应的单元格。 在使用Range对象时,我们需要指定所操作的单元格或单元格区域的具体位置,可以通过指定工作表、行号、列号或者具体的单元格地址来实现。例如,可以通过Worksheets("Sheet1").Range("A5")来表示工作表Sheet1中的第五行第一列的单元格。然后可以通过对该单元格的Value属性进行赋值,实现给单元格赋值的操作。例如,可以通过Worksheets("Sheet1").Range("A5").Value = 22来讲22赋值给工作表Sheet1中的第五行第一列的单元格。 除了赋值操作,Range对象还可以实现其他操作,比如取值、复制、粘贴等。通过获取单元格的Value属性,可以取得该单元格的值。可以通过Range对象的Copy和Paste方法实现单元格内容的复制和粘贴。例如,可以通过Worksheets("Sheet1").Range("A5").Copy和Worksheets("Sheet1").Range("B5").Paste来实现将单元格A5的内容复制到单元格B5。 Range对象还有很多其他属性和方法可供使用,比如Merge方法可以合并单元格、Interior属性可以设置单元格的背景颜色和字体颜色等。通过灵活运用Range对象的各种属性和方法,可以实现丰富多样的操作,提高VBA代码的效率和灵活性。 在处理大量数据时,Range对象的应用尤为重要。通过遍历整个单元格区域来实现对数据的批量处理,可以极大地提高代码的运行效率。同时,Range对象还可以多次使用,可以在多个工作表之间进行数据的复制、粘贴等操作,提高了代码的复用性。 另外,Cells对象也是一个非常实用的对象,通过指定行号和列号来操作单元格,可以简化对单元格的定位过程。通过Cells对象,可以快速准确地定位到需要操作的单元格,实现对数据的快速处理。 总的来说,Range和Cells对象在ExcelVBA中的应用非常广泛,可以实现对Excel工作表中各种数据的处理和操作。通过灵活使用Range对象的各种属性和方法,可以实现对单元格内容的赋值、取值、复制、粘贴等操作,提高代码的效率和灵活性。同时,通过Cells对象的使用,可以快速定位到需要操作的单元格,简化代码的编写过程。因此,深入了解和熟练掌握Range和Cells对象的用法对于提高ExcelVBA编程水平是非常重要的。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

C++中的数据库连接与操作技术

# 1. 数据库连接基础 数据库连接是在各种软件开发项目中常见的操作,它是连接应用程序与数据库之间的桥梁,负责传递数据与指令。在C++中,数据库连接的实现有多种方式,针对不同的需求和数据库类型有不同的选择。在本章中,我们将深入探讨数据库连接的概念、重要性以及在C++中常用的数据库连接方式。同时,我们也会介绍配置数据库连接的环境要求,帮助读者更好地理解和应用数据库连接技术。 # 2. 数据库操作流程 数据库操作是C++程序中常见的任务之一,通过数据库操作可以实现对数据库的增删改查等操作。在本章中,我们将介绍数据库操作的基本流程、C++中执行SQL查询语句的方法以及常见的异常处理技巧。让我们

unity中如何使用代码实现随机生成三个不相同的整数

你可以使用以下代码在Unity中生成三个不同的随机整数: ```csharp using System.Collections.Generic; public class RandomNumbers : MonoBehaviour { public int minNumber = 1; public int maxNumber = 10; private List<int> generatedNumbers = new List<int>(); void Start() { GenerateRandomNumbers();

基于单片机的电梯控制模型设计.doc

基于单片机的电梯控制模型设计是一项旨在完成课程设计的重要教学环节。通过使用Proteus软件与Keil软件进行整合,构建单片机虚拟实验平台,学生可以在PC上自行搭建硬件电路,并完成电路分析、系统调试和输出显示的硬件设计部分。同时,在Keil软件中编写程序,进行编译和仿真,完成系统的软件设计部分。最终,在PC上展示系统的运行效果。通过这种设计方式,学生可以通过仿真系统节约开发时间和成本,同时具有灵活性和可扩展性。 这种基于单片机的电梯控制模型设计有利于促进课程和教学改革,更有利于学生人才的培养。从经济性、可移植性、可推广性的角度来看,建立这样的课程设计平台具有非常重要的意义。通过仿真系统,学生可以在实际操作之前完成系统设计和调试工作,提高了实验效率和准确性。最终,通过Proteus设计PCB,并完成真正硬件的调试。这种设计方案可以为学生提供实践操作的机会,帮助他们更好地理解电梯控制系统的原理和实践应用。 在设计方案介绍中,指出了在工业领域中,通常采用可编程控制器或微型计算机实现电梯逻辑控制,虽然可编程控制器有较强的抗干扰性,但价格昂贵且针对性强。而通过单片机控制中心,可以针对不同楼层分别进行合理调度,实现电梯控制的模拟。设计中使用按键用于用户发出服务请求,LED用于显示电梯状态。通过这种设计方案,学生可以了解电梯控制系统的基本原理和实现方法,培养他们的实践操作能力和创新思维。 总的来说,基于单片机的电梯控制模型设计是一项具有重要意义的课程设计项目。通过Proteus软件与Keil软件的整合,搭建单片机虚拟实验平台,可以帮助学生更好地理解电梯控制系统的原理和实践应用,培养他们的实践操作能力和创新思维。这种设计方案不仅有利于课程和教学改革,也对学生的人才培养具有积极的促进作用。通过这样的设计方案,学生可以在未来的工作中更好地应用所学知识,为电梯控制系统的研发和应用做出贡献。