feedForwardLayer = [ fullyConnectedLayer(dff,'Name','fc1') reluLayer('Name','relu') dropoutLayer(dropoutRate,'Name','dropout') fullyConnectedLayer(dModel,'Name','fc2') dropoutLayer(dropoutRate,'Name','dropout') ];输出六类如何修改
时间: 2023-08-05 13:10:28 浏览: 164
如果你想将这个全连接网络修改为输出 6 类,那么你需要将最后一层的 fullyConnectedLayer 替换为一个输出大小为 6 的全连接层,并且修改网络的损失函数为交叉熵(cross-entropy)。具体的修改如下所示:
```matlab
numClasses = 6;
feedForwardLayer = [
fullyConnectedLayer(dff,'Name','fc1')
reluLayer('Name','relu')
dropoutLayer(dropoutRate,'Name','dropout')
fullyConnectedLayer(numClasses,'Name','fc2') % 修改为输出 6 类的全连接层
softmaxLayer('Name','softmax') % 增加一个 softmax 层
classificationLayer('Name','classoutput') % 增加一个分类层
];
% 修改网络的损失函数为交叉熵
options = trainingOptions('adam', ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'InitialLearnRate',initialLearnRate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',learnRateDropFactor, ...
'LearnRateDropPeriod',learnRateDropPeriod, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{XValidation,YValidation}, ...
'ValidationFrequency',validationFrequency, ...
'ValidationPatience',Inf, ...
'ExecutionEnvironment',executionEnvironment, ...
'LossFcn', 'crossentropy'); % 修改为交叉熵损失函数
```
阅读全文