求解 0-1 背包问题

时间: 2023-11-06 07:55:05 浏览: 96
求解0-1背包问题可以使用动态规划法。首先,需要将问题抽象化,将物品的重量和价值表示为Wi和Vi,背包的最大承载重量表示为C。然后,建立模型,使用一个二维数组dp[i][j]表示前i个物品在背包承重为j时的最大价值。接下来,根据约束条件进行判断,如果将第i个物品放入背包时不超过背包的承重,则可以更新dp[i][j]的值为max(dp[i-1][j], dp[i-1][j-Wi]+Vi),否则dp[i][j]的值等于dp[i-1][j]。通过填表的方式,不断更新dp数组的值,最终dp[n][C]即为背包问题的最优解。根据解组成,可以回溯得到具体的物品组合。
相关问题

回溯法求解0-1背包问题

好的,我来为您解答关于回溯法求解0-1背包问题的问题。 0-1背包问题是一个经典的动态规划问题,它的解法有很多种,其中一种就是回溯法。 回溯法求解0-1背包问题的基本思路如下: 1.定义一个数组记录每个物品的重量和价值,以及一个数组记录每个物品是否已经被选择。 2.从第一个物品开始,依次尝试将其放入背包中。如果放入当前物品后背包仍然能够装下其他物品,则继续考虑下一个物品,否则回溯到上一个物品。 3.在回溯时,如果已经考虑完所有物品,则更新当前最优解。 4.重复上述过程,直到考虑完所有的状态。 具体实现时,可以采用递归的方式,从第一个物品开始逐步深入,直到考虑完所有物品为止。在递归的过程中,需要记录当前的背包重量和价值,以及已经选择的物品。 需要注意的是,回溯法虽然可以求解0-1背包问题,但是在物品数量较大时,它的时间复杂度会非常高,因此不适用于大规模的实际问题。在实际应用中,更多采用动态规划等高效的算法来求解0-1背包问题。

分支限界求解0-1背包问题

好的,这是一个非常经典的问题。0-1背包问题是指有一个容量为C的背包,有n个物品,每个物品有一个重量w和一个价值v。现在需要从这些物品中选择一些放入背包中,使得背包中物品的总重量不超过C,且背包中物品的总价值最大。 分支限界法是一种求解0-1背包问题的有效算法。其基本思路是,将每个物品看作一个节点,构建一个搜索树,每个节点表示一种状态,即已经选取到第几个物品,当前背包的重量以及当前背包的价值。在搜索树的每一层,对应于选择或不选择当前物品的两种情况,将其分别作为两个子节点。然后,根据一个优先队列,选择当前最有可能的节点进行扩展,直到找到一个可行解或者队列为空为止。 具体实现分为以下步骤: 1. 将所有物品按照单位重量的价值从大到小排序。 2. 初始化一个优先队列,将初始状态加入队列。 3. 从队列中取出当前最有可能的状态,扩展其子节点。 4. 对于每个子节点,计算其上界(上界为当前背包中的价值加上剩余物品按照单位重量价值排序之后能够放入背包的最大价值),如果上界比当前最优解还差,则舍弃该分支,否则将该子节点加入队列。 5. 重复以上步骤,直到找到一个可行解或者队列为空。 6. 输出可行解的价值和物品选择情况。 希望这个回答能够帮到你!
阅读全文

相关推荐

application/x-rar
利用动态规划原理进行求解 0-1背包问题 已知背包的容量为b,有n种物件,其价格依次为w1,w2,...,wn;其容量依次为v1,v2,...,vn。 现要求在背包允许的容量内,装的物件价值达到最大,其数字模型为: max z=1 x1 + 6 x2 + 18 x3 + 22 x4 + 28 x5 1 x1 + 2 x2 + 5 x3 + 6 x4 + 7 x5 <=11 xi=0,1 i=1,2,3,4,5 S(i,j)=max{S(i-1,j),S(i-1,j-vi)+wi} S(0,j)=0 j>=0 S(i,j)=负无穷 j<0 i=1,w1=1,v1=1 S(1,1)=max{S(0,1),S(0,1-1)+1}=1 S(1,2)=max{S(0,2),S(0,2-1)+1}=1 S(1,3)=...=S(1,11)=1 i=2,w2=6,v2=2 S(2,1)=max{S(1,1),S(1,1-2)+6}=1 S(2,2)=max{S(1,1),S(1,2-2)+6}=6 S(2,3)=max{S(1,3),S(1,3-2)+6}=7 S(2,4)=...=S(2,11)=7 i=3,w3=18,v3=5 S(3,1)=max{S(2,1),S(2,1-5)+18}=1 S(3,2)=max{S(2,2),S(2,2-5)+18}=6 S(3,3)=max{S(2,3),S(2,3-5)+18}=7 S(3,4)=max{S(2,4),S(2,4-5)+18}=7 S(3,5)=max{S(2,5),S(2,5-5)+18}=18 S(3,6)=max{S(2,6),S(2,6-5)+18}=19 S(3,7)=max{S(2,7),S(2,7-5)+18}=24 S(3,8)=max{S(2,8),S(2,8-5)+18}=25 S(3,9)=S(3,10)=...=S(3,11)=25 i=4,w4=22,v4=6 S(4,1)=max{S(3,1),S(3,1-6)+22}=1 S(4,2)=max{S(3,2),S(3,2-6)+22}=6 S(4,3)=max{S(3,3),S(3,3-6)+22}=7 S(4,4)=max{S(3,4),S(3,4-6)+22}=7 S(4,5)=max{S(3,5),S(3,5-6)+22}=18 S(4,6)=max{S(3,6),S(3,6-6)+22}=22 S(4,7)=max{S(3,7),S(3,7-6)+22}=24 S(4,8)=max{S(3,7),S(3,8-6)+22}=38 S(4,9)=max{S(3,7),S(3,9-6)+22}=29 S(4,10)=max{S(3,7),S(3,10-6)+22}=29 S(4,11)=max{S(3,7),S(3,11-6)+22}=40 i=5,w5=28,v5=7 S(5,1)=max{S(4,1),S(4,1-7)+28}=1 S(5,2)=max{S(4,2),S(4,2-7)+28}=6 S(5,3)=max{S(4,3),S(4,3-7)+28}=7 S(5,4)=max{S(4,4),S(4,4-7)+28}=7 S(5,5)=max{S(4,5),S(4,5-7)+28}=18 S(5,6)=max{S(4,6),S(4,6-7)+28}=22 S(5,7)=max{S(4,7),S(4,7-7)+28}=28 S(5,8)=max{S(4,8),S(4,8-7)+28}=29 S(5,9)=max{S(4,9),S(4,9-7)+28}=34 S(5,10)=max{S(4,10),S(4,10-7)+28}=35 S(5,11)=max{S(4,11),S(4,11-7)+28}=40

大家在看

recommend-type

840D的PLC功能块FB2和FB3读写NC系统变量

840D的PLC功能块FB2和FB3读写NC系统变量
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

不平衡学习的自适应合成采样方法ADASYN附Matlab代码.zip

1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
recommend-type

易语言-momo/陌陌/弹幕/优雅看直播

陌陌直播弹幕解析源码。
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

动态规划法求解0-1背包问题实验报告.pdf

总结来说,动态规划法求解0-1背包问题的关键在于构建正确的状态转移方程,并通过填表的方式逐步计算出所有子问题的最大价值。这种思想不仅可以应用于背包问题,还可以广泛应用于其他优化问题,如最长公共子序列、...
recommend-type

【PHP】基于ThinkPHP 5.0的考试系统tp5.zip

【PHP】基于ThinkPHP 5.0的考试系统tp5
recommend-type

ssm-vue-新能源汽车在线租赁管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

三台松下的PLC一起通信控制16轴的程序,表格定位,用于固态硬盘的组装,精密度要求高,手动,自动、报景、空机运行等,程序写法新颖,清晰明了,注释清晰易懂,是学习多台PLC并联和定位控制非常好的栗子

三台松下的PLC一起通信控制16轴的程序,表格定位,用于固态硬盘的组装,精密度要求高,手动,自动、报景、空机运行等,程序写法新颖,清晰明了,注释清晰易懂,是学习多台PLC并联和定位控制非常好的栗子
recommend-type

ssm-jsp-多角色学生管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在 IDEA 中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习使用jsp、html构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。