roc_auc和auc_roc区别
时间: 2023-08-05 13:10:09 浏览: 202
实际上,roc_auc和auc_roc是同一个指标,都是用来评估二分类模型性能的指标。ROC (Receiver Operating Characteristic) 曲线是反映分类模型在不同阈值下的真正例率 (TPR) 与假正例率 (FPR) 之间的关系曲线,AUC (Area Under Curve) 则是 ROC 曲线下的面积大小。因此,roc_auc和auc_roc都是表示 ROC 曲线下的面积大小,只不过表述顺序不同而已。
相关问题
df = pd.DataFrame() df['model'] = model df['Roc_auc'] = roc_auc df['train_score'] = train_score df['test_score'] = test_score df Out[74]: model Roc_auc train_score test_score 0 DecisionTree 0.832536 0.982522 0.844444 1 KNeighbors 0.661085 0.717853 0.700000
这段代码中,首先创建了一个空的DataFrame对象,然后将模型、ROC曲线下面积,训练集得分和测试集得分分别作为数据列添加到DataFrame中。最后,通过打印输出DataFrame,展示了所有模型在不同评价指标下的表现情况,包括在训练集和测试集上的得分以及使用ROC曲线下面积作为评价指标的预测结果。从输出结果可以看出,DecisionTree模型在所有指标下的表现均优于KNeighbors模型。
roc_auc_score和auc的区别
roc_auc_score和auc都是用来评估分类模型效果的指标,但是它们的计算方法和应用场景略有不同。
ROC曲线(Receiver Operating Characteristic Curve)是一种用于评估二分类模型效果的工具,它是以真正率(True Positive Rate)为纵坐标,假正率(False Positive Rate)为横坐标,绘制出的一条曲线,ROC曲线下的面积被称为AUC(Area Under Curve),AUC值越大,模型的分类效果越好。roc_auc_score就是用来计算AUC值的函数。
而AUC(Area Under Curve)是ROC曲线下的面积,它是一个介于0~1之间的值,AUC越接近1,说明模型的分类效果越好。AUC的计算方法是对ROC曲线下的面积进行积分计算得到的。
因此,roc_auc_score是用来计算AUC值的函数,而AUC是ROC曲线下的面积,是一种用于评估分类模型效果的指标。
阅读全文