使用python+opencv 实现增强图像对比度
时间: 2023-09-04 17:15:09 浏览: 170
当然可以!您可以使用以下代码实现:
```
import cv2
img = cv2.imread('your_image.jpg')
alpha = 1.5 # 增强对比度的参数
beta = 0 # 亮度调整的参数
new_image = cv2.convertScaleAbs(img, alpha=alpha, beta=beta)
cv2.imwrite('new_image.jpg', new_image)
```
其中,alpha 是用来增强对比度的参数,数值越大增强的效果越明显,beta 是用来调整亮度的参数,数值越大图片越亮,数值越小图片越暗。
相关问题
Python+OpenCV实现照片的预处理 提高对比度
要使用Python和OpenCV来预处理照片并提高对比度,可以按照以下步骤进行操作:
1. 导入必要的库
```python
import cv2
import numpy as np
```
2. 读取图像并转换为灰度图像
```python
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
```
3. 对图像进行直方图均衡化处理
```python
equ = cv2.equalizeHist(gray)
```
4. 对图像进行CLAHE处理(可选)
```python
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl = clahe.apply(gray)
```
5. 对图像进行对比度增强
```python
alpha = 1.5 # 对比度增强系数
beta = 0 # 亮度增强系数
contrast = cv2.convertScaleAbs(cl, alpha=alpha, beta=beta)
```
6. 显示结果
```python
cv2.imshow('Original', img)
cv2.imshow('Histogram Equalization', equ)
cv2.imshow('CLAHE', cl)
cv2.imshow('Contrast Enhancement', contrast)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这样就可以对照片进行预处理并提高对比度了。
阅读全文
相关推荐

















