knn图书推荐的推荐算法的代码
时间: 2024-04-27 07:02:23 浏览: 125
下面是基于k-近邻算法的图书推荐代码示例:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
# 假设已经有了用户对图书的评分矩阵user_book_ratings,其中行表示用户,列表示图书
user_book_ratings = np.array([[5, 3, 0, 4, 0, 0, 0, 0, 0],
[0, 0, 4, 0, 5, 0, 0, 2, 0],
[0, 0, 0, 0, 0, 3, 0, 0, 4],
[0, 4, 0, 0, 0, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 5]])
# 对于一个用户,假设想要推荐3本图书
n_recommendations = 3
# 计算每个图书之间的相似度,这里使用余弦相似度
book_similarities = np.dot(user_book_ratings.T, user_book_ratings) / np.array([np.sqrt(np.sum(user_book_ratings.T[i]**2)) * np.sqrt(np.sum(user_book_ratings.T[j]**2)) for i in range(user_book_ratings.shape[1]) for j in range(user_book_ratings.shape[1])]).reshape((user_book_ratings.shape[1], user_book_ratings.shape[1]))
# 使用k-近邻算法,找到与目标用户最相似的k个用户
k = 3
knn = NearestNeighbors(n_neighbors=k, metric='cosine')
knn.fit(user_book_ratings)
distances, indices = knn.kneighbors(user_book_ratings[-1].reshape(1, -1))
# 获取这k个用户评分最高的n本图书
recommendations = []
for i in range(k):
for j in range(user_book_ratings.shape[1]):
if user_book_ratings[indices[i]][j] != 0 and user_book_ratings[-1][j] == 0:
recommendations.append((book_similarities[-1][j] * user_book_ratings[indices[i]][j], j))
recommendations.sort(reverse=True)
for i in range(n_recommendations):
print(recommendations[i][1])
```
其中,`user_book_ratings`是用户对图书的评分矩阵,`n_recommendations`是想要推荐的图书数量,`k`是k-近邻算法中的k值。代码首先计算了图书之间的相似度,然后使用k-近邻算法找到与目标用户最相似的k个用户,最后获取这k个用户评分最高的n本图书作为推荐结果。
阅读全文