X_train, Y_train, X_test, Y_test = time_seq(x, time_step, val_seq) Y_train, Y_test = Y_train.reshape(-1,), Y_test.reshape(-1,)
时间: 2023-10-06 11:13:29 浏览: 73
这段代码看起来是在对时间序列数据进行预处理,可以解释为:
- `x` 是原始的时间序列数据,包含多个特征;
- `time_step` 是时间步长,表示每个样本使用多少个时间步长作为特征;
- `val_seq` 是验证集的时间步长,表示从时间序列的末尾开始,选取多少个时间步长作为验证集;
- `time_seq` 函数将原始时间序列数据 `x` 转换为滑动窗口样本,其中 `X_train` 是训练集数据,`Y_train` 是训练集标签,`X_test` 是验证集数据,`Y_test` 是验证集标签;
- `Y_train` 和 `Y_test` 使用 `reshape` 函数将标签数据从二维数组转换为一维数组,方便后续的模型训练。
相关问题
import numpy as np import matplotlib.pyplot as plt import pickle as pkl import pandas as pd import tensorflow.keras from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.layers import LSTM, GRU, Dense, RepeatVector, TimeDistributed, Input, BatchNormalization, \ multiply, concatenate, Flatten, Activation, dot from sklearn.metrics import mean_squared_error,mean_absolute_error from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau df = pd.read_csv('lorenz.csv') signal = df['signal'].values.reshape(-1, 1) x_train_max = 128 signal_normalize = np.divide(signal, x_train_max) def truncate(x, train_len=100): in_, out_, lbl = [], [], [] for i in range(len(x) - train_len): in_.append(x[i:(i + train_len)].tolist()) out_.append(x[i + train_len]) lbl.append(i) return np.array(in_), np.array(out_), np.array(lbl) X_in, X_out, lbl = truncate(signal_normalize, train_len=50) X_input_train = X_in[np.where(lbl <= 9500)] X_output_train = X_out[np.where(lbl <= 9500)] X_input_test = X_in[np.where(lbl > 9500)] X_output_test = X_out[np.where(lbl > 9500)] # Load model model = load_model("model_forecasting_seq2seq_lstm_lorenz.h5") opt = Adam(lr=1e-5, clipnorm=1) model.compile(loss='mean_squared_error', optimizer=opt, metrics=['mae']) #plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) # Train model early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1, mode='min', restore_best_weights=True) #reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=9, verbose=1, mode='min', min_lr=1e-5) #history = model.fit(X_train, y_train, epochs=500, batch_size=128, validation_data=(X_test, y_test),callbacks=[early_stop]) #model.save("lstm_model_lorenz.h5") # 对测试集进行预测 train_pred = model.predict(X_input_train[:, :, :]) * x_train_max test_pred = model.predict(X_input_test[:, :, :]) * x_train_max train_true = X_output_train[:, :] * x_train_max test_true = X_output_test[:, :] * x_train_max # 计算预测指标 ith_timestep = 10 # Specify the number of recursive prediction steps # List to store the predicted steps pred_len =2 predicted_steps = [] for i in range(X_output_test.shape[0]-pred_len+1): YPred =[],temdata = X_input_test[i,:] for j in range(pred_len): Ypred.append (model.predict(temdata)) temdata = [X_input_test[i,j+1:-1],YPred] # Convert the predicted steps into numpy array predicted_steps = np.array(predicted_steps) # Plot the predicted steps #plt.plot(X_output_test[0:ith_timestep], label='True') plt.plot(predicted_steps, label='Predicted') plt.legend() plt.show()
这段代码看起来是一个用于时间序列预测的深度学习模型。该模型使用了序列到序列 LSTM (Seq2Seq LSTM) 模型进行预测,使用了 EarlyStopping 回调函数来避免过度拟合,并使用 Adam 优化器来进行模型优化。
具体来说,该代码读取了一个名为 'lorenz.csv' 的数据文件,将其中的信号列读取出来并进行了归一化处理。然后,使用 truncate 函数将信号序列切割成训练集和测试集,将其输入到 Seq2Seq LSTM 模型中进行训练。训练完成后,对测试集进行预测并计算预测指标,最后使用 matplotlib 库将预测结果可视化。
如果需要更详细的解释或修改建议,请提出具体问题或要求。
用Python代码实现基于RNA序列数据集实验,数据集在model文件夹中: ALKBH5_Baltz2012.train.negatives.fa 是训练集负样本; ALKBH5_Baltz2012.train.positives.fa 是训练集正样本; ALKBH5_Baltz2012.val.negatives.fa 是验证集负样本; ALKBH5_Baltz2012.val.positives.fa 是验证集正样本。 用Pytorch框架搭建循环神经网络,输出最终分类正确率。
好的,这是一个很有趣的问题,需要一些时间和代码实现。首先,我们需要导入 PyTorch 模块和其他必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
from sklearn.model_selection import train_test_split
```
然后,我们需要定义一个数据集类,用于加载并处理 RNA 序列数据集。这个类需要实现 __len__() 方法和 __getitem__() 方法。
```python
class RNADataSet(Dataset):
def __init__(self, file_path):
self.data = []
self.labels = []
self.vocab = {'A': 0, 'C': 1, 'G': 2, 'U': 3} # 将四个核苷酸映射到数字
with open(file_path, 'r') as f:
lines = f.readlines()
for i in range(0, len(lines), 2):
seq = lines[i+1].strip() # RNA序列
label = int(lines[i].strip()[1]) # 类别标签(正样本为1,负样本为0)
seq_list = [self.vocab[c] for c in seq] # 将RNA序列转换为数字列表
self.data.append(seq_list)
self.labels.append(label)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return torch.tensor(self.data[idx]), torch.tensor(self.labels[idx])
```
然后,我们需要定义一个循环神经网络模型:
```python
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.rnn(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
接下来,我们需要加载数据集,划分训练集和验证集:
```python
train_dataset = RNADataSet('./model/ALKBH5_Baltz2012.train.negatives.fa')
train_dataset += RNADataSet('./model/ALKBH5_Baltz2012.train.positives.fa')
val_dataset = RNADataSet('./model/ALKBH5_Baltz2012.val.negatives.fa')
val_dataset += RNADataSet('./model/ALKBH5_Baltz2012.val.positives.fa')
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
train_size = len(train_dataset)
val_size = len(val_dataset)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```
然后,我们需要定义损失函数和优化器:
```python
model = RNN(input_size=4, hidden_size=128, num_layers=2, output_size=2).to(device) # 输入维度为4,即四种核苷酸
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
最后,我们需要训练模型,并输出最终分类正确率:
```python
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
train_correct = 0
for data, label in train_loader:
data = data.to(device)
label = label.to(device)
optimizer.zero_grad()
output = model(data.float())
loss = criterion(output, label)
train_loss += loss.item()
_, predicted = torch.max(output.data, 1)
train_correct += (predicted == label).sum().item()
loss.backward()
optimizer.step()
train_loss /= train_size
train_acc = train_correct / train_size
val_loss = 0.0
val_correct = 0
with torch.no_grad():
for data, label in val_loader:
data = data.to(device)
label = label.to(device)
output = model(data.float())
loss = criterion(output, label)
val_loss += loss.item()
_, predicted = torch.max(output.data, 1)
val_correct += (predicted == label).sum().item()
val_loss /= val_size
val_acc = val_correct / val_size
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc))
```
最终,我们可以得到模型在验证集上的分类正确率。
阅读全文