帮我写一个demo,实现yolov5双向追踪计数的功能。
时间: 2024-04-10 12:32:27 浏览: 110
复现yolov5行人追踪,计数功能
以下是一个使用YOLOv5实现双向追踪计数的示例demo:
```python
import cv2
import torch
from torchvision.models import detection
from torchvision.transforms import functional as F
from deep_sort import build_tracker
from utils import draw_boxes, draw_counts
# 加载YOLOv5模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
model = model.autoshape() # 自动调整输入大小
model.eval()
# 初始化DeepSORT追踪器
tracker = build_tracker()
# 设定计数线坐标和计数器
count_line = [(0, 300), (800, 300)]
count_up = 0
count_down = 0
def detect_and_track(frame):
global count_up, count_down
# YOLOv5目标检测
results = model(frame)
# 解析检测结果并提取边界框和类别
boxes = results.xyxy[0][:, :4].tolist()
scores = results.xyxy[0][:, 4].tolist()
labels = results.xyxy[0][:, 5].tolist()
# 运行DeepSORT追踪器
tracker.update(boxes, labels)
# 获取追踪结果
tracked_objects = tracker.get_tracked_objects()
# 绘制边界框和计数线
frame = draw_boxes(frame, tracked_objects)
frame = draw_counts(frame, count_line, count_up, count_down)
# 计算车辆通过计数线的数量
for obj in tracked_objects:
cx, cy = obj['center']
if cy > count_line[0][1] and cy < count_line[1][1]:
if obj['direction'] == 'up':
count_up += 1
elif obj['direction'] == 'down':
count_down += 1
return frame
# 打开视频文件
cap = cv2.VideoCapture('path/to/video.mp4')
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 调整帧大小和颜色通道顺序
frame = cv2.resize(frame, (800, 600))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 转换为PyTorch张量
frame_tensor = F.to_tensor(frame)
# 双向追踪计数
output_frame = detect_and_track(frame_tensor)
# 显示结果帧
cv2.imshow('Double Tracking and Counting', output_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
请确保在运行代码之前已经安装了YOLOv5、DeepSORT和相关的依赖项,并将视频文件的路径替换为实际的视频文件路径。此外,你可能还需要根据你的项目需求进行适当的调整和修改。
阅读全文