cnn代码,使用pytorch,将45x235的低分辨率输入映射为150x675的高分辨率输出,训练数据为700个,测试数据为300个,并且把训练误差和测试误差打印出图片,训练数据excel是存放在编号为1-700的表格中,测试数据存放在编号为701-1000的excel表格中。
时间: 2024-04-07 09:33:47 浏览: 59
您可以使用以下代码示例来实现CNN(卷积神经网络)的图像超分辨率(image super-resolution)任务,使用PyTorch框架进行训练和测试。请确保您已经安装了PyTorch和Pandas库,并将训练和测试数据准备好。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from torch.utils.data import Dataset, DataLoader
# 定义超分辨率模型
class SuperResolutionModel(nn.Module):
def __init__(self):
super(SuperResolutionModel, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 1, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
out = self.relu(self.conv1(x))
out = self.relu(self.conv2(out))
out = self.conv3(out)
return out
# 定义数据集类
class CustomDataset(Dataset):
def __init__(self, csv_file):
self.data = pd.read_csv(csv_file)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img_path = self.data['image_path'][idx]
low_res_image = load_image(img_path) # 自定义加载低分辨率图像的函数
high_res_image = load_image(img_path.replace('low_res', 'high_res')) # 自定义加载高分辨率图像的函数
return low_res_image, high_res_image
# 训练函数
def train(model, train_loader, criterion, optimizer):
model.train()
train_loss = 0.0
for i, (input, target) in enumerate(train_loader):
input = input.to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_loader)
# 测试函数
def test(model, test_loader, criterion):
model.eval()
test_loss = 0.0
with torch.no_grad():
for i, (input, target) in enumerate(test_loader):
input = input.to(device)
target = target.to(device)
output = model(input)
loss = criterion(output, target)
test_loss += loss.item()
return test_loss / len(test_loader)
# 定义训练和测试数据的路径
train_csv_file = 'train_data.csv'
test_csv_file = 'test_data.csv'
# 创建数据集和数据加载器
train_dataset = CustomDataset(train_csv_file)
test_dataset = CustomDataset(test_csv_file)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=16)
# 创建模型实例和损失函数
model = SuperResolutionModel()
criterion = nn.MSELoss()
# 使用GPU加速训练(如可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练和测试循环
num_epochs = 10
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer)
test_loss = test(model, test_loader, criterion)
print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
# 保存模型
torch.save(model.state_dict(), 'super_resolution_model.pth')
```
在上述代码中,您需要自定义加载低分辨率图像和高分辨率图像的函数`load_image()`,并将其替换为适用于您的数据集的加载函数。您还需要将训练和测试数据的CSV文件路径替换为实际的文件路径。
训练数据的CSV文件(train_data.csv)应具有以下格式:
```
image_path
1.jpg
2.jpg
...
700.jpg
```
测试数据的CSV文件(test_data.csv)应具有以下格式:
```
image_path
701.jpg
702.jpg
...
1000.jpg
```
请确保您的训练和测试数据文件夹中包含相应的图像文件,并按照指定的文件名格式进行命名。
阅读全文