matlab bp pid

时间: 2023-08-25 20:07:51 浏览: 35
Matlab中的BP(Backpropagation)是一种常见的神经网络训练算法,可以用来训练多层前馈神经网络(MLP)。 PID(Proportional-Integral-Derivative)是一种经典的控制器设计方法,常用于工业控制和机器人控制等领域。 在Matlab中,可以使用PID工具箱来进行PID控制器的设计和调试,具体步骤如下: 1. 打开Matlab并创建一个新的PID控制器对象。 ```matlab C = pid(Kp,Ki,Kd) ``` 其中Kp、Ki和Kd分别代表比例、积分和微分增益。 2. 设定控制器的采样时间和输出范围。 ```matlab C.sampleTime = Ts; C.outputLimits = [y_min,y_max]; ``` 其中Ts为采样时间,y_min和y_max分别为控制器输出的最小值和最大值。 3. 设定控制器的输入和输出通道。 ```matlab C = pid(Kp,Ki,Kd,'inputname','input','outputname','output') ``` 其中inputname和outputname分别代表输入和输出通道的名称。 4. 使用PID工具箱自动调节控制器。 ```matlab C = pidtune(sys,C) ``` 其中sys为要控制的系统模型。 5. 将控制器应用于实际系统。 ```matlab u = pid(C,r,y) ``` 其中r为参考信号,y为反馈信号,u为控制器输出。 对于BP神经网络,可以使用Matlab自带的神经网络工具箱进行训练和测试。具体步骤如下: 1. 创建一个多层前馈神经网络对象。 ```matlab net = feedforwardnet(hiddenSizes) ``` 其中hiddenSizes为一个向量,表示每一层的神经元个数。 2. 设定网络的训练参数和目标。 ```matlab net.trainFcn = 'trainscg'; net.trainParam.epochs = 1000; net.trainParam.goal = 0.01; ``` 其中trainFcn代表训练算法,epochs表示最大训练次数,goal为训练目标。 3. 使用训练数据来训练网络。 ```matlab [net,tr] = train(net,x,t) ``` 其中x为输入数据,t为目标数据。 4. 使用测试数据来测试网络性能。 ```matlab y = net(x_test) ``` 其中x_test为测试数据,y为网络输出结果。

相关推荐

最新推荐

BP神经网络整定的PID算法_matlab源程序

BP神经网络整定的PID算法_matlab源程序,神经网络的PID算法,MATLAB源程序代码

bp-pid的S型函数

BP神经网络是一种具有多层前馈型结构的神经网络,其结构中包含有隐含层。主要是通过采取最速下降法调节网络中各个神经元之间连接权值,使网络获得最小的误差。S函数的编写运行,需根据需要输入相应的数值。

简历-求职简历-word-文件-简历模版免费分享-应届生-高颜值简历模版-个人简历模版-简约大气-大学生在校生-求职-实习

maven安装与配置简历-求职简历-word-文件-简历模版免费分享-应届生-高颜值简历模版-个人简历模版-简约大气-大学生在校生-求职-实习 简历是展示个人经历、技能和能力的重要文档,以下是一个常见的简历格式和内容模板,供您参考: 简历格式: 头部信息:包括姓名、联系方式(电话号码、电子邮件等)、地址等个人基本信息。 求职目标(可选):简短描述您的求职意向和目标。 教育背景:列出您的教育经历,包括学校名称、所学专业、就读时间等。 工作经验:按时间顺序列出您的工作经历,包括公司名称、职位、工作时间、工作职责和成就等。 技能和能力:列出您的专业技能、语言能力、计算机技能等与职位相关的能力。 实习经验/项目经验(可选):如果您有相关实习或项目经验,可以列出相关信息。 获奖和荣誉(可选):列出您在学术、工作或其他领域获得的奖项和荣誉。 自我评价(可选):简要描述您的个人特点、能力和职业目标。 兴趣爱好(可选):列出您的兴趣爱好,展示您的多样性和个人素质。 参考人(可选):如果您有可提供推荐的人员,可以在简历中提供其联系信息。 简历内容模板: 姓名: 联系方式: 地址: 求职目标:

计算机组成原理.zip

计算机组成原理

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依