根据"C:/Users/19489\Desktop\大三上\数据挖掘\大数据示例-超市.xlsx"文件(列索引为“订单 ID”和“子类别”)用python编写关联规则,要求能输出各频繁项集的支持度信息和关联规则的置信度
时间: 2024-10-16 20:06:41 浏览: 26
为了根据您提供的Excel文件创建关联规则并计算支持度和置信度,我们可以使用Python的pandas库来处理表格数据,然后使用像`mlxtend`这样的库来执行Apriori算法。以下是一个简单的步骤说明:
1. 首先,确保已经安装了所需的库,如pandas、openpyxl和mlxtend。如果没有安装,可以使用pip安装:
```
pip install pandas openpyxl mlxtend
```
2. 读取Excel文件并加载数据到DataFrame:
```python
import pandas as pd
excel_file = 'C:/Users/19489/Desktop/大三上/数据挖掘/大数据示例-超市.xlsx'
df = pd.read_excel(excel_file, usecols=['订单 ID', '子类别'])
```
3. 将"订单 ID"列转换为唯一标识符(如果它不是),因为Apriori需要离散的数据:
```python
if '订单 ID' not in df['订单 ID'].nunique():
df['订单 ID'] = df.groupby('订单 ID').ngroup()
```
4. 使用mlxtend的apriori函数生成频繁项集:
```python
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
te = TransactionEncoder()
te_ary = te.fit_transform(df[['订单 ID', '子类别']].values)
freq_sets = apriori(te_ary, min_support=0.1, use_colnames=True)
```
这里设置了一个最低的支持度阈值(例如0.1,表示一项规则必须在10%的交易中出现才被认为是频繁的)。
5. 计算支持度和置信度:
```python
def calculate_metrics(rules):
support_dict = {}
confidence_dict = {}
for itemset, freq in rules.items():
support = freq.support_
for rule in freq.ordered_statistics:
antecedent, consequent = map(set, zip(*rule[:-1]))
confidence = rule[0][1] / support
key = (tuple(sorted(antecedent)), consequent)
if key not in support_dict:
support_dict[key] = support
if key in confidence_dict:
confidence_dict[key].append(confidence)
else:
confidence_dict[key] = [confidence]
return support_dict, confidence_dict
support, confidence = calculate_metrics(freq_sets)
```
6. 输出结果:
```python
for rule, values in confidence.items():
antecedent, consequent = rule
print(f"规则:{' AND '.join(antecedent)} -> {consequent}")
print(f"支持度:{support[rule]:.2f}")
print(f"平均置信度:{sum(values) / len(values):.2f}\n")
```
阅读全文