word2vec训练词向量
时间: 2023-09-04 13:16:35 浏览: 148
Word2Vec是一种用于训练词向量的算法,它通过学习词汇在上下文中的分布来表示单词。Word2Vec算法有两种不同的实现方式:CBOW和Skip-gram。
CBOW(Continuous Bag-of-Words)模型是基于上下文预测目标单词的概率,它将上下文中的词向量平均后作为输入,目标单词作为输出。这种方法适用于较小的数据集,因为它可以更快地训练。
Skip-gram模型是基于目标单词预测上下文单词的概率,它将目标单词作为输入,上下文单词作为输出。这种方法适用于更大的数据集,因为它可以更好地处理稀有词汇和长尾效应。
在使用Word2Vec进行训练时,需要准备一个语料库,并设置一些参数,例如向量维度、上下文窗口大小等。使用Python中的gensim库可以方便地进行Word2Vec训练。以下是一个简单的Word2Vec训练代码示例:
```python
from gensim.models import Word2Vec
sentences = [["this", "is", "a", "sentence"], ["this", "is", "another", "sentence"]]
model = Word2Vec(sentences, size=100, window=5, min_count=1, workers=4)
```
其中,`sentences`是一个包含多个句子的列表,`size`表示词向量维度,`window`表示上下文窗口大小,`min_count`表示最小词频,`workers`表示使用的CPU数量。训练完成后,可以使用`model.wv`获取词向量表示,例如`model.wv['word']`即可获取单词`word`的词向量。
阅读全文