我想通过python实现以下功能,我该怎么写代码? 1.通过UCI数据库获取iris数据集 2.通过Numpy读取数据后,并分析数据,使其显示出数据的样本个数,维数,标签类别数 3.将数据进行分割,分成训练集和测试集,这一步要求通过Scikit-learn train-test split算法来实现 4.通过训练集来训练出KNN模型,SVM模型,K-means模型三种模型,并用Matplotlib pyplot来展示三种模型的预测结果和准确率
时间: 2024-02-21 15:57:44 浏览: 72
SRBCT.zip_machine learning_uci数据库 SRBCT_二分类_二分类 python_数据集分类
5星 · 资源好评率100%
以下是实现你所需功能的Python代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
# 通过UCI数据库获取iris数据集
iris = load_iris()
# 通过Numpy读取数据后,并分析数据,使其显示出数据的样本个数,维数,标签类别数
data = iris.data
n_samples, n_features = data.shape
labels = iris.target_names
n_labels = len(labels)
print("样本个数:", n_samples)
print("维数:", n_features)
print("标签类别数:", n_labels)
# 将数据进行分割,分成训练集和测试集,这一步要求通过Scikit-learn train-test split算法来实现
X_train, X_test, y_train, y_test = train_test_split(data, iris.target, test_size=0.3, random_state=42)
# 通过训练集来训练出KNN模型,SVM模型,K-means模型三种模型
knn_model = KNeighborsClassifier()
knn_model.fit(X_train, y_train)
svm_model = SVC()
svm_model.fit(X_train, y_train)
kmeans_model = KMeans(n_clusters=n_labels, random_state=42)
kmeans_model.fit(X_train)
# 用Matplotlib pyplot来展示三种模型的预测结果和准确率
models = [('KNN', knn_model), ('SVM', svm_model), ('K-means', kmeans_model)]
for name, model in models:
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.title(f"{name}: accuracy = {accuracy}")
plt.show()
```
请注意,这段代码假定你已经安装了NumPy、scikit-learn和Matplotlib等必要的Python库。
阅读全文