卷积层后加瓶颈残差模块代码实现
时间: 2023-05-24 17:07:03 浏览: 126
以下是卷积层后加瓶颈残差模块的代码实现(使用PyTorch框架):
```
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * 4, kernel_size=1, stride=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
```
该模块包含了3个卷积层和3个归一化层,使用ReLU作为激活函数。其中第一个卷积层的卷积核大小为1x1,目的是减小通道数;第二个卷积层的卷积核大小为3x3,实现卷积特征提取;第三个卷积层的卷积核大小仍为1x1,但通道数是第一个卷积层的4倍,目的是增加通道数。该模块的in_channels和out_channels分别为输入和输出的通道数,stride为步长,downsample为下采样模块,用于对residual分支进行下采样,使其与out分支的特征图大小相同,从而能够进行相加操作。在forward函数中,首先将输入x保存为residual,然后依次进行卷积、归一化和ReLU激活操作,最后进行residual分支的下采样、相加操作和ReLU激活操作。最后返回out输出特征图。
阅读全文