json数据集转换成coco
时间: 2023-07-24 18:05:09 浏览: 105
要将JSON数据集转换为COCO格式,你可以按照以下步骤进行操作:
1. 导入所需的库:
```
import json
from pycocotools import mask as maskUtils
from pycocotools.coco import COCO
```
2. 读取JSON文件:
```
with open('path/to/json/file.json', 'r') as f:
data = json.load(f)
```
3. 创建COCO实例并设置基本信息:
```
coco = COCO()
coco.dataset['info'] = {
'description': 'Your dataset description',
'url': 'Your dataset URL',
'version': '1.0',
'year': 2022,
'contributor': 'Your name or organization'
}
```
4. 处理图像信息:
```
images = data['images']
for img in images:
image_info = {
'id': img['id'],
'file_name': img['file_name'],
'height': img['height'],
'width': img['width']
}
coco.dataset['images'].append(image_info)
```
5. 处理类别信息:
```
categories = data['categories']
for cat in categories:
category_info = {
'id': cat['id'],
'name': cat['name'],
'supercategory': cat['supercategory']
}
coco.dataset['categories'].append(category_info)
```
6. 处理标注信息:
```
annotations = data['annotations']
for anno in annotations:
segmentation = anno['segmentation']
area = maskUtils.area(segmentation)
bbox = maskUtils.toBbox(segmentation)
annotation_info = {
'id': anno['id'],
'image_id': anno['image_id'],
'category_id': anno['category_id'],
'segmentation': segmentation,
'area': area.tolist(),
'bbox': bbox.tolist(),
'iscrowd': anno['iscrowd']
}
coco.dataset['annotations'].append(annotation_info)
```
7. 保存COCO格式的文件:
```
coco.createIndex()
output_file = 'path/to/save/coco.json'
with open(output_file, 'w') as f:
json.dump(coco.dataset, f)
```
这样,你就可以将JSON数据集转换为COCO格式的文件。记得替换代码中的路径和信息为你自己的数据集相关内容。希望能对你有所帮助!
阅读全文