使用mlp模型在每一层的迁移学习中使用sffs算法,sffs使用互信息做评价指标pythonpytorch完整代码和每行详细注释
时间: 2024-03-23 17:36:12 浏览: 183
以下是使用MLP模型在每一层的迁移学习中使用SFFS算法,SFFS使用互信息做评价指标的Python PyTorch完整代码和每行详细注释:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import mutual_info_score
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
# 假设我们有两个数据集,分别为source和target,每个数据集都有n个特征和m个样本
n = 10
m = 100
# 创建source和target数据集
source_data = torch.randn(m, n)
target_data = torch.randn(m, n)
# 创建source和target的标签,这里假设标签都是0或1
source_labels = torch.randint(0, 2, size=(m,))
target_labels = torch.randint(0, 2, size=(m,))
# 创建MLP模型
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 定义MLP模型的输入维度、隐藏层维度和输出维度
input_size = n
hidden_size = 20
output_size = 2
# 创建MLP模型
model = MLP(input_size, hidden_size, output_size)
# 定义MLP模型的损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练MLP模型
def train(model, data, labels, criterion, optimizer, epochs):
for epoch in range(epochs):
running_loss = 0.0
for i in range(m):
optimizer.zero_grad()
output = model(data[i])
loss = criterion(output.unsqueeze(0), labels[i].unsqueeze(0))
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch+1, running_loss/m))
# 定义迁移学习的函数
def transfer_learning(source_data, source_labels, target_data, target_labels, mlp_model, num_layers):
# 先对源数据进行全量特征训练
train(mlp_model, source_data, source_labels, criterion, optimizer, epochs=10)
# 获取全量特征的互信息
source_mi = []
for i in range(n):
source_mi.append(mutual_info_score(source_data[:,i], source_labels))
# 初始化特征选择器
sfs = SFS(mlp_model, k_features=num_layers, forward=True, floating=False, scoring='mutual_info_score', cv=0)
# 开始迭代迁移学习
for i in range(num_layers):
# 使用SFFS算法进行特征选择
sfs = sfs.fit(source_data, source_labels)
selected_features = list(sfs.k_feature_idx_)
# 使用选出的特征重新训练模型
mlp_model.fc1 = nn.Linear(len(selected_features), hidden_size)
train(mlp_model, source_data[:,selected_features], source_labels, criterion, optimizer, epochs=10)
# 计算新特征的互信息
new_mi = []
for j in selected_features:
new_mi.append(mutual_info_score(target_data[:,j], target_labels))
# 选择互信息增益最大的新特征
max_gain = -float('inf')
max_idx = -1
for j in range(n):
if j not in selected_features:
gain = new_mi[j] - source_mi[j]
if gain > max_gain:
max_gain = gain
max_idx = j
# 添加新特征
selected_features.append(max_idx)
mlp_model.fc1 = nn.Linear(len(selected_features), hidden_size)
train(mlp_model, source_data[:,selected_features], source_labels, criterion, optimizer, epochs=10)
# 更新全量特征的互信息
source_mi = []
for j in range(n):
source_mi.append(mutual_info_score(source_data[:,j], source_labels))
return mlp_model
```
注释中的代码实现了以下步骤:
1. 创建source和target数据集,每个数据集都有n个特征和m个样本。
2. 创建MLP模型,定义MLP模型的输入维度、隐藏层维度和输出维度,以及MLP模型的损失函数和优化器。
3. 定义train函数用于训练MLP模型。
4. 定义transfer_learning函数用于进行迁移学习。该函数首先对源数据进行全量特征训练,然后使用SFFS算法进行特征选择,并使用选出的特征重新训练模型。在每一层迭代中,该函数计算新特征的互信息,并选择互信息增益最大的新特征,然后添加新特征并更新全量特征的互信息。最终,该函数返回迁移学习后的MLP模型。
阅读全文