pytorch NegSTOILoss
时间: 2023-08-13 20:04:45 浏览: 183
pytorch
PyTorch中没有内置的NegSTOILoss函数,但是你可以自己定义一个。NegSTOILoss是Negative Short-Term Online Instance Loss的缩写,它在目标检测任务中用于训练对象检测器。
下面是一个示例的NegSTOILoss实现:
```python
import torch
import torch.nn as nn
class NegSTOILoss(nn.Module):
def __init__(self, alpha=2.0, beta=0.25, eps=1e-6):
super(NegSTOILoss, self).__init__()
self.alpha = alpha
self.beta = beta
self.eps = eps
def forward(self, classification_pred, classification_target, regression_pred, regression_target):
classification_loss = self.focal_loss(classification_pred, classification_target)
regression_loss = self.iou_loss(regression_pred, regression_target)
total_loss = classification_loss + self.alpha * regression_loss
return total_loss
def focal_loss(self, inputs, targets):
targets = targets.float()
inputs = inputs.sigmoid()
pos_mask = targets >= 1
neg_mask = targets < 1
pos_loss = -torch.log(inputs + self.eps) * torch.pow(1 - inputs, self.alpha) * pos_mask.float()
neg_loss = -torch.log(1 - inputs + self.eps) * torch.pow(inputs, self.alpha) * neg_mask.float()
num_pos = pos_mask.sum()
num_neg = neg_mask.sum()
pos_loss = pos_loss.sum() / (num_pos + self.eps)
neg_loss = neg_loss.sum() / (num_neg + self.eps)
focal_loss = self.beta * pos_loss + (1 - self.beta) * neg_loss
return focal_loss
def iou_loss(self, pred, target):
pred_left = pred[:, 0]
pred_top = pred[:, 1]
pred_right = pred[:, 2]
pred_bottom = pred[:, 3]
target_left = target[:, 0]
target_top = target[:, 1]
target_right = target[:, 2]
target_bottom = target[:, 3]
target_area = (target_left + target_right) * (target_top + target_bottom)
pred_area = (pred_left + pred_right) * (pred_top + pred_bottom)
x_left = torch.max(pred_left, target_left)
y_top = torch.max(pred_top, target_top)
x_right = torch.min(pred_right, target_right)
y_bottom = torch.min(pred_bottom, target_bottom)
intersection_area = torch.clamp(x_right - x_left, min=0) * torch.clamp(y_bottom - y_top, min=0)
union_area = target_area + pred_area - intersection_area
iou_loss = -torch.log((intersection_area + self.eps) / (union_area + self.eps))
return iou_loss.mean()
```
这是一个简单的实现,你可以根据自己的需求进行修改和调整。希望能帮到你!
阅读全文