解释这段代码with torch.no_grad(): action5 = self.agents.select_action(s, self.noise, self.epsilon) + self.action4 # 变道车动作 action = [self.action0, self.action1, self.action2, self.action3, action5] u = action5
时间: 2024-04-26 16:25:15 浏览: 148
这段代码使用了Python的上下文管理器(context manager)with语句和PyTorch的torch.no_grad()函数,用于执行不需要梯度计算的代码块。
具体来说,该代码块中的代码使用了已经训练好的智能体self.agents来根据当前状态s选择动作。其中,self.noise和self.epsilon用于在动作选择中添加一定的噪声,增加探索性,促进智能体的学习。另外,action4和action5是由智能体根据当前状态选择的动作。
在选择完动作后,将所有动作放到一个列表action中,其中,self.action0、self.action1、self.action2和self.action3分别是智能体根据当前状态选择的其他4个动作。action5是根据当前状态选择的变道车动作。最后,将变道车动作的值赋给变量u。
由于该代码块中的代码不需要进行梯度计算,因此使用torch.no_grad()函数可以提高代码的执行效率。
相关问题
解释这段代码while True: with torch.no_grad(): action5 = self.agents.select_action(s, self.noise, self.epsilon) + self.action4 # 变道车动作 action = [self.action0, self.action1, self.action2, self.action3, action5] u = action5 # actions.append(action) s_next, r, done, info = self.env.step(action) episode_step += 1 self.buffer.store_episode(s, u, r, s_next) s = s_next ep_rewards += r if self.buffer.current_size >= self.args.batch_size: transitions = self.buffer.sample(self.args.batch_size) self.agents.learn(transitions) self.noise = max(0.05, self.noise - 0.0000005) self.epsilon = max(0.05, self.epsilon - 0.0000005) if done or episode_step % self.episode_limit == 0: rewards.append(ep_rewards) print("Episode:{}, Agent_1:{}".format(time_step, ep_rewards)) a1.append(time_step) break
这段代码是一个无限循环,其中包含了一个with语句块,使用了torch的no_grad()函数来禁用梯度计算。在循环体内,代码定义了一个变量action5作为变道车的动作,并将其与其他四个动作一起作为总动作action。然后使用总动作action来执行环境的step()函数,同时记录回报和状态转移信息。如果经验池的大小达到了指定的batch_size,就从经验池中采样出一个batch_size大小的经验并让智能体进行学习。在每个episode结束时,记录回报并打印。如果done为真或者episode_step达到了episode_limit,就跳出循环。
while True: with torch.no_grad(): action1 = action2 = action3 = action4 = self.action0 action5 = self.agents.select_action(s, self.noise, self.epsilon) + self.action0 # 变道车动作 action = [action1, action2, action3, action4, action5] u = action5 # actions.append(action) s_next, r, done, info = self.env.step(action) episode_step += 1 self.buffer.store_episode(s, u, r, s_next) s = s_next ep_rewards += r
这段代码看起来是一个强化学习算法的主要训练循环,其中使用了一个基于PyTorch深度学习框架的模型。在每次循环中,模型接收当前状态s,并输出一个动作向量action,其中第5个元素action5表示变道车的动作。接着,这个动作向量被传递给环境,环境返回下一个状态s_next,奖励信号r以及一个标志done,表示当前episode是否结束。接着,当前状态s,动作向量action,下一个状态s_next以及奖励信号r被存储在一个经验缓存中,以便在后续训练中使用。最后,代码记录了当前episode的奖励总和ep_rewards和步数episode_step,以便输出和监视算法的性能。
阅读全文