pytorch多维张量根据维度去重
时间: 2023-07-14 09:08:30 浏览: 477
如果你想在 PyTorch 中根据某个维度对多维张量进行去重操作,你可以使用 `torch.unique` 函数并指定 `dim` 参数来实现。
下面是一个示例代码,演示如何根据维度对多维张量进行去重:
```python
import torch
# 创建一个多维张量
x = torch.tensor([[1, 2, 3], [4, 2, 1], [1, 2, 3]])
# 根据第一维度进行去重
unique_values, indices = torch.unique(x, dim=0, return_inverse=True)
# 打印去重后的张量和索引
print("去重后的张量:")
print(unique_values)
print("原张量中每个元素在去重后张量中的索引:")
print(indices)
```
运行以上代码,会输出去重后的张量和每个元素在去重后张量中的索引:
```
去重后的张量:
tensor([[1, 2, 3],
[4, 2, 1]])
原张量中每个元素在去重后张量中的索引:
tensor([0, 1, 0])
```
这里使用 `torch.unique` 函数对多维张量进行去重操作。通过设置 `dim=0` 参数,我们指定对第一维度进行去重。`return_inverse=True` 参数用于返回原张量中每个元素在去重后张量中的索引。
需要注意的是,返回的 `unique_values` 张量中的顺序是按照去重后的顺序排列的,而不是原始张量中的顺序。如果需要保留原始张量的顺序,可以使用 `torch.sort` 函数对索引进行排序操作。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)