结合上述问题给出完整不出错误的代码
时间: 2024-10-22 18:22:26 浏览: 17
为了帮助您构建一个完整的代码来实现桃子的智能识别与分级,我将提供一个基于深度学习框架(如TensorFlow或PyTorch)的示例代码。这个代码将包括数据加载、预处理、模型定义、训练、评估和提交结果生成等步骤。
### 1. 导入必要的库
```python
import os
import json
import numpy as np
import pandas as pd
from PIL import Image
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
```
### 2. 数据加载和预处理
```python
def load_images_from_folder(folder):
images = []
for filename in os.listdir(folder):
img_path = os.path.join(folder, filename)
if img_path.endswith(".png"):
img = Image.open(img_path).resize((128, 128))
img = np.array(img) / 255.0 # 归一化
images.append(img)
return np.array(images)
def load_labels(label_file):
with open(label_file, 'r') as f:
labels = json.load(f)
label_dict = {item['file_name']: item['label'] for item in labels}
return label_dict
# 路径设置
train_image_folder = "C:\\Users\\24067\\Desktop\\peach_split\\train"
val_image_folder = "C:\\Users\\24067\\Desktop\\peach_split\\val"
train_label_file = "C:\\Users\\24067\\Desktop\\train_label.json"
val_label_file = "C:\\Users\\24067\\Desktop\\val_label.json"
# 加载图像和标签
train_images = load_images_from_folder(train_image_folder)
val_images = load_images_from_folder(val_image_folder)
train_labels = load_labels(train_label_file)
val_labels = load_labels(val_label_file)
# 将标签转换为数值
label_mapping = {'特级': 0, '一级': 1, '二级': 2, '三级': 3}
train_labels = np.array([label_mapping[label] for label in train_labels.values()])
val_labels = np.array([label_mapping[label] for label in val_labels.values()])
# 划分训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(train_images, train_labels, test_size=0.2, random_state=42)
```
### 3. 模型定义
```python
def create_model():
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(4, activation='softmax')
])
model.compile(optimizer=Adam(lr=0.001), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
return model
model = create_model()
model.summary()
```
### 4. 训练模型
```python
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
checkpoint = ModelCheckpoint('best_model.h5', monitor='val_accuracy', save_best_only=True, mode='max')
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=32,
validation_data=(X_val, y_val),
callbacks=[early_stopping, checkpoint]
)
```
### 5. 评估模型
```python
# 加载最佳模型
model.load_weights('best_model.h5')
# 在验证集上评估模型
loss, accuracy = model.evaluate(X_val, y_val)
print(f'Validation Loss: {loss:.4f}, Validation Accuracy: {accuracy:.4f}')
```
### 6. 生成提交文件
```python
def predict_and_save_submission(model, image_folder, submission_file, label_mapping):
test_images = load_images_from_folder(image_folder)
predictions = model.predict(test_images)
predicted_labels = [np.argmax(pred) for pred in predictions]
# 将数值标签转换回文本标签
reverse_label_mapping = {v: k for k, v in label_mapping.items()}
predicted_labels = [reverse_label_mapping[label] for label in predicted_labels]
# 生成提交文件
sample_submission = pd.read_csv("C:\\Users\\24067\\Desktop\\sample_submission.csv")
sample_submission['label'] = predicted_labels
sample_submission.to_csv(submission_file, index=False)
predict_and_save_submission(model, val_image_folder, "submission.csv", label_mapping)
```
### 7. 运行整个流程
```python
if __name__ == "__main__":
# 加载数据
train_images, train_labels = load_images_from_folder(train_image_folder), load_labels(train_label_file)
val_images, val_labels = load_images_from_folder(val_image_folder), load_labels(val_label_file)
# 预处理数据
train_labels = np.array([label_mapping[label] for label in train_labels.values()])
val_labels = np.array([label_mapping[label] for label in val_labels.values()])
X_train, X_val, y_train, y_val = train_test_split(train_images, train_labels, test_size=0.2, random_state=42)
# 定义模型
model = create_model()
# 训练模型
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=32,
validation_data=(X_val, y_val),
callbacks=[EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
ModelCheckpoint('best_model.h5', monitor='val_accuracy', save_best_only=True, mode='max')]
)
# 评估模型
model.load_weights('best_model.h5')
loss, accuracy = model.evaluate(X_val, y_val)
print(f'Validation Loss: {loss:.4f}, Validation Accuracy: {accuracy:.4f}')
# 生成提交文件
predict_and_save_submission(model, val_image_folder, "submission.csv", label_mapping)
```
以上代码涵盖了从数据加载到模型训练、评估和生成提交文件的完整流程。您可以根据实际需求调整超参数和模型结构。希望这对您有所帮助!
阅读全文