可以给我相关的代码吗
时间: 2024-02-28 11:54:51 浏览: 70
当然可以,这里给你提供一个基本的代码架构,你可以根据需要进行修改和优化。这个代码包括了数据集的预处理、模型的训练和评估、分类结果的保存等主要步骤,你可以根据需要进行补充和修改。
```
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
import os
import numpy as np
from sklearn.metrics import confusion_matrix
from tqdm import tqdm
# 定义数据集路径和标签
data_dir = "D:/wjd" # 数据集路径
labels = ['Ag', 'Al', 'Au', 'Cu', 'W', 'V', 'Mo', 'Ta'] # 标签
# 定义数据预处理
transform_train = transforms.Compose([
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_val = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义数据集
train_data = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=transform_train)
val_data = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'val'), transform=transform_val)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True, num_workers=4)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False, num_workers=4)
# 定义模型
model = torchvision.models.resnet50(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, len(labels))
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
# 定义训练函数
def train(model, dataloader, criterion, optimizer):
model.train()
running_loss = 0.0
running_corrects = 0
for inputs, labels in tqdm(dataloader):
inputs = inputs.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc
# 定义评估函数
def evaluate(model, dataloader, criterion):
model.eval()
running_loss = 0.0
running_corrects = 0
y_true = []
y_pred = []
with torch.no_grad():
for inputs, labels in tqdm(dataloader):
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
y_true.extend(labels.cpu().numpy())
y_pred.extend(preds.cpu().numpy())
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
return epoch_loss, epoch_acc, y_true, y_pred
# 定义主函数
def main():
# 训练模型
for epoch in range(10):
train_loss, train_acc = train(model, train_loader, criterion, optimizer)
val_loss, val_acc, val_y_true, val_y_pred = evaluate(model, val_loader, criterion)
print('Epoch: {:02d}, Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'.format(
epoch+1, train_loss, train_acc, val_loss, val_acc))
# 评估模型
_, _, val_y_true, val_y_pred = evaluate(model, val_loader, criterion)
val_cm = confusion_matrix(val_y_true, val_y_pred)
print('Confusion Matrix:', val_cm)
# 保存分类结果
test_dir = "D:/test" # 测试集路径
test_data = torchvision.datasets.ImageFolder(test_dir, transform=transform_val)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=False, num_workers=4)
model.eval()
with torch.no_grad():
for inputs, _ in test_loader:
inputs = inputs.cuda()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for i in range(inputs.shape[0]):
img_path = test_data.imgs[i][0]
img_name = os.path.basename(img_path)
label_name = labels[preds[i]]
save_dir = "D:/jk/" + label_name
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_path = os.path.join(save_dir, img_name)
os.rename(img_path, save_path)
if __name__ == '__main__':
main()
```
这个代码可能还需要一些修改和优化,比如你可能需要调整模型的超参数、修改数据预处理的方法、增加数据增强的方式、调整训练和评估的指标等。但是,这个代码已经提供了一个完整的框架,可以帮助你开始实现这个任务。
阅读全文