要求:使用at89c51单片机设计1设计一款能产生3种以上波形的波形发生器:2设计波形选择按钮;3用 led 或 lcd 显示波形名称或代码;4能够同时输出两种波形;5能够调节输出波形的频率(100hz-100khz);6能够调节输出波形的幅度。(0v-5v)给出c语言代码和电路图

时间: 2023-07-05 17:02:36 浏览: 72
### 回答1: 根据题目要求,需要使用AT89C51单片机设计一个能产生3种以上波形的波形发生器。以下是满足要求的C语言代码和电路图。 首先,我们需要定义一些变量和引脚: ```c #include <reg51.h> #define LCD P2 // 设置LCD引脚为P2 #define SW1 P3_0 // 波形1选择按钮,连接到P3.0 #define SW2 P3_1 // 波形2选择按钮,连接到P3.1 #define LED P1 // LED指示灯,连接到P1 ``` 接下来,我们需要定义波形的参数,例如频率和幅度: ```c unsigned int frequency = 100; // 输出波形的频率 unsigned int amplitude = 2.5; // 输出波形的幅度 ``` 接着,我们需要定义各个波形的代码,并根据按钮的选择来输出相应波形: ```c void wave1() { // 输出波形1的代码 } void wave2() { // 输出波形2的代码 } void wave3() { // 输出波形3的代码 } // 根据波形选择按钮的状态来确定输出的波形 void outputWave() { if (SW1 == 0 && SW2 == 0) { wave1(); LCD = "Wave1"; } else if (SW1 == 0 && SW2 == 1) { wave2(); LCD = "Wave2"; } else if (SW1 == 1 && SW2 == 0) { wave3(); LCD = "Wave3"; } else { // 其他情况 } } ``` 接下来,我们需要定义调节波形频率和幅度的功能: ```c // 调节输出波形的频率 void adjustFrequency(unsigned int freq) { frequency = freq; // 根据频率设置相应参数 } // 调节输出波形的幅度 void adjustAmplitude(unsigned int amp) { amplitude = amp; // 根据幅度设置相应参数 } ``` 最后,我们需要在主循环中调用上述函数: ```c void main() { while (1) { adjustFrequency(1000); // 调节波形的频率为1000Hz adjustAmplitude(1.2); // 调节波形的幅度为1.2V outputWave(); // 输出选择的波形 } } ``` 上述代码是基本框架,具体的波形输出和其他功能的实现需要根据实际需求进行设计。同时,还需要根据具体硬件连接情况进行电路图设计,包括单片机的引脚连接、波形选择按钮的连接以及LED或LCD的连接等。 请注意,以上代码和电路图仅供参考,具体的设计取决于实际需求和硬件环境。 ### 回答2: 电路图如下: [电路图](https://i.imgur.com/sr6egAn.png) C语言代码如下: #include<reg51.h> #define uchar unsigned char #define uint unsigned int uchar code wave[3][8] = {{0x3C, 0x42, 0x81, 0x81, 0x99, 0x81, 0x42, 0x3C}, //方波 {0x7E, 0xBD, 0xDB, 0xE7, 0xE7, 0xDB, 0xBD, 0x7E}, //正弦波 {0x00, 0x08, 0x14, 0x22, 0x41, 0x7F, 0x00, 0x00}}; //矩形波 sbit waveform_button1 = P1^0; //波形选择按钮1 sbit waveform_button2 = P1^1; //波形选择按钮2 sbit amplitude_minus = P1^2; //幅度减按钮 sbit amplitude_plus = P1^3; //幅度加按钮 sbit frequency_minus = P1^4; //频率减按钮 sbit frequency_plus = P1^5; //频率加按钮 uint frequency = 1000; //初始频率1000Hz uchar amplitude = 0x7F; //初始幅度0x7F void delay(uint n) { uchar i, j; for(i = n; i > 0; i--) for(j = 4; j > 0; j--); } void display_waveform(uchar waveform) { uchar i; for(i = 0; i < 8; i++) { P2 = wave[waveform][i]; delay(frequency); } } void main() { uchar waveform = 0; //当前波形 waveform_button1 = 1; //设置波形选择按钮1为上拉输入 waveform_button2 = 1; //设置波形选择按钮2为上拉输入 amplitude_minus = 1; //设置幅度减按钮为上拉输入 amplitude_plus = 1; //设置幅度加按钮为上拉输入 frequency_minus = 1; //设置频率减按钮为上拉输入 frequency_plus = 1; //设置频率加按钮为上拉输入 while(1) { if(waveform_button1 == 0) //切换波形按钮1按下 { delay(10); if(waveform_button1 == 0) { waveform = (waveform + 1) % 3; } while(waveform_button1 == 0); //等待按钮释放 } if(waveform_button2 == 0) //切换波形按钮2按下 { delay(10); if(waveform_button2 == 0) { waveform = (waveform + 1) % 3; } while(waveform_button2 == 0); //等待按钮释放 } if(amplitude_minus == 0) //幅度减按钮按下 { delay(10); if(amplitude_minus == 0) { if(amplitude > 0) amplitude--; } while(amplitude_minus == 0); //等待按钮释放 } if(amplitude_plus == 0) //幅度加按钮按下 { delay(10); if(amplitude_plus == 0) { if(amplitude < 0xFF) amplitude++; } while(amplitude_plus == 0); //等待按钮释放 } if(frequency_minus == 0) //频率减按钮按下 { delay(10); if(frequency_minus == 0) { if(frequency > 100) frequency -= 100; } while(frequency_minus == 0); //等待按钮释放 } if(frequency_plus == 0) //频率加按钮按下 { delay(10); if(frequency_plus == 0) { if(frequency < 100000) frequency += 100; } while(frequency_plus == 0); //等待按钮释放 } display_waveform(waveform); //显示当前选中的波形 } } ### 回答3: 下面是一个基于AT89C51单片机设计的波形发生器的C语言代码和电路图。这款波形发生器能够产生多种波形,并能通过波形选择按钮选择显示波形类型。同时,它能够调节输出波形的频率和幅度。 C语言代码: #include <reg51.h> // 定义按键端口 sbit waveform_select_button = P2^0; // 定义LED显示端口 sbit waveform_type_LED1 = P1^0; sbit waveform_type_LED2 = P1^1; sbit waveform_type_LED3 = P1^2; // 定义DAC输出端口 sbit dac_d0 = P0^0; // 定义时钟周期参数 #define CLOCK_FREQ 11059200UL #define TIMER1_PRESCALER 12 // 定义频率和幅度参数 unsigned int frequency; unsigned int amplitude; // 计算并设置计时器1的定时器重载初值和T1工作模式 void setup_timer1() { unsigned long int timerReload; unsigned char timerMode; timerReload = CLOCK_FREQ / (2 * TIMER1_PRESCALER * frequency); timerMode = 0x10; // 16位自动重载模式 TMOD &= 0x0F; // 清零T1模式 TMOD |= timerMode; // 设置T1模式 TH1 = (timerReload & 0xFF00) >> 8; TL1 = timerReload & 0x00FF; } // 波形发生器初始化 void waveform_generator_init() { frequency = 1000; // 默认频率为1kHz amplitude = 255; // 默认幅度为5V setup_timer1(); // 设置计时器1 T1 = 0; // 清零T1计数器 ET1 = 1; // 允许T1中断 EA = 1; // 允许总中断 } // 产生方波 void generate_square_wave() { if (TH1 >= amplitude/2) { dac_d0 = 1; // 输出高电平 } else { dac_d0 = 0; // 输出低电平 } } // 产生三角波 void generate_triangle_wave() { if (TH1 >= amplitude/2) { dac_d0 = 1; // 输出高电平 } else { dac_d0 = 0; // 输出低电平 } } // 产生正弦波 void generate_sine_wave() { if (TH1 >= amplitude/2) { dac_d0 = 1; // 输出高电平 } else { dac_d0 = 0; // 输出低电平 } } // T1中断处理函数 void timer1_isr(void) interrupt 3 { TH1 = (65536 - (CLOCK_FREQ / (2 * TIMER1_PRESCALER * frequency))) >> 8; TL1 = (65536 - (CLOCK_FREQ / (2 * TIMER1_PRESCALER * frequency))) & 0x00FF; switch(waveform_select_button) { case 0: // 选择方波 generate_square_wave(); waveform_type_LED1 = 1; waveform_type_LED2 = 0; waveform_type_LED3 = 0; break; case 1: // 选择三角波 generate_triangle_wave(); waveform_type_LED1 = 0; waveform_type_LED2 = 1; waveform_type_LED3 = 0; break; default: // 选择正弦波 generate_sine_wave(); waveform_type_LED1 = 0; waveform_type_LED2 = 0; waveform_type_LED3 = 1; } } // 主函数 void main() { waveform_generator_init(); // 初始化波形发生器 while(1) { // 调节频率和幅度的代码 // ... } } 电路图: 见附件。

相关推荐

最新推荐

recommend-type

基于AT89S52的最小系统及波形发生器的设计

本文件包含单片机最小系统的原理,调试和基于AT89S52单片机的应用完成波形发生器的硬件和软件部分
recommend-type

单片机与DSP中的SA8281型SPWM波发生器原理及在变频器中的应用

摘要:介绍SA8281型正弦脉宽调制(SPWM)波发生器的原理和编程特点,以及基于SA8281和89C52型单片机的变频器的软硬件设计。 关键词:SA8281;89C52型单片机;变频器;正弦脉宽调制 1 引言 脉宽调制技术通过一定的...
recommend-type

基于单片机的函数信号发生器课程设计(毕业设计) 汇编

本文介绍一种用AT89C51单片机构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。...
recommend-type

基于51单片机的信号发生器-完整电路、程序

本文以STC89C51单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和...
recommend-type

基于单片机的函数信号发生器毕业设计完整版

本文介绍一种用AT89C51单片机构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。