用C++语言写opencv dnn推理onnx Unet语义分割模型的代码
时间: 2023-07-30 10:10:48 浏览: 557
C++使用onnxruntime/opencv对onnx模型进行推理(附代码)
5星 · 资源好评率100%
下面是一个简单的 C++ OpenCV DNN 推理代码示例,使用 ONNX 格式的 U-Net 模型进行语义分割:
```c++
#include <opencv2/dnn/dnn.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv;
using namespace cv::dnn;
int main(int argc, char** argv)
{
// 读取模型文件
const string model_file_path = "unet.onnx";
Net net = readNetFromONNX(model_file_path);
// 读取输入图像
const string input_file_path = "input.jpg";
Mat input_image = imread(input_file_path);
// 预处理输入图像
Mat input_blob = blobFromImage(input_image, 1.0 / 255.0, Size(572, 572), Scalar(0, 0, 0), true, false);
// 运行推理
Mat output_blob;
net.setInput(input_blob);
net.forward(output_blob);
// 后处理输出结果
Mat output_image;
output_blob = output_blob.reshape(1, 388 * 388);
output_blob.convertTo(output_blob, CV_8UC1, 255.0);
applyColorMap(output_blob, output_image, COLORMAP_JET);
// 显示输出结果
imshow("Output", output_image);
waitKey(0);
return 0;
}
```
这个示例代码假设已经有了一个 ONNX 格式的 U-Net 模型文件 `unet.onnx` 和一个输入图像文件 `input.jpg`。代码中首先使用 `readNetFromONNX` 函数读取了模型文件,然后使用 `imread` 函数读取了输入图像。
接下来,代码中使用 `blobFromImage` 函数将输入图像转换成网络需要的输入格式,并使用 `setInput` 函数将输入数据设置到网络中,使用 `forward` 函数进行推理,得到输出结果。
最后,代码中使用 `reshape` 函数和 `convertTo` 函数对输出结果进行后处理,然后使用 `applyColorMap` 函数将结果可视化,使用 `imshow` 函数显示输出结果,使用 `waitKey` 函数等待用户按下键盘。
阅读全文