S=1+x-x^2/2!+x^3/3!-...+(-1)^(n+1)x^n/n!的值python
时间: 2023-07-16 20:17:34 浏览: 137
计算 S=1!+2!+3!+...+N!。
你好,可以使用以下代码来计算 S=1+x-x^2/2!+x^3/3!-...+(-1)^(n+1)x^n/n! 的值:
```python
import math
def calculate_s(x, n):
s = 0
for i in range(n):
s += ((-1)**i)*(x**i)/math.factorial(i)
s += ((-1)**(n))*(x**n)/math.factorial(n)
return s
x = 2
n = 5
s = calculate_s(x, n)
print(s)
```
其中,x 是要计算的变量,n 是要计算的项数。以上代码会输出 x=2,n=5 时的 S 值。你可以根据需要修改 x 和 n 的值。
阅读全文