有一个销售数据的数据集,包含的属性有,门店所在的城市,销售的渠道线上线下,客户性别,客户年龄段,产品类别,客户数量,销售金额,订单数量,购买的产品数量,产品的成本,产品的单价构成,用Spark SQL对该数据集进行数据分析,将代码呈现出来
时间: 2024-05-01 22:19:20 浏览: 185
假设数据集的表名为sales_data,以下是用Spark SQL对数据集进行分析的示例代码:
```sql
-- 查询销售金额最高的前10个城市
SELECT city, SUM(sales_amount) AS total_sales_amount
FROM sales_data
GROUP BY city
ORDER BY total_sales_amount DESC
LIMIT 10;
-- 查询每种产品的销售数量和销售金额
SELECT product_category, SUM(order_quantity) AS total_order_quantity, SUM(sales_amount) AS total_sales_amount
FROM sales_data
GROUP BY product_category;
-- 查询线上销售额和线下销售额的占比
SELECT channel, SUM(sales_amount) AS total_sales_amount, SUM(CASE WHEN channel = 'online' THEN sales_amount ELSE 0 END) / SUM(sales_amount) AS online_sales_ratio, SUM(CASE WHEN channel = 'offline' THEN sales_amount ELSE 0 END) / SUM(sales_amount) AS offline_sales_ratio
FROM sales_data
GROUP BY channel;
-- 查询不同性别和年龄段的客户数量和销售金额
SELECT gender, age_group, COUNT(DISTINCT customer_id) AS customer_count, SUM(sales_amount) AS total_sales_amount
FROM sales_data
GROUP BY gender, age_group;
-- 查询每个订单中平均购买的产品数量和成本占销售金额的比例
SELECT order_id, AVG(product_quantity) AS avg_product_quantity, AVG(product_cost / sales_amount) AS cost_ratio
FROM sales_data
GROUP BY order_id;
```
以上代码仅供参考,实际分析需要根据具体业务场景和需求进行调整和优化。
阅读全文