for(i=0;i<16;i++) //统计每一个字符的数量 { if((RXRFID[i]>='0'&&RXRFID[i]<='9')||(RXRFID[i]>='A'&&RXRFID[i]<='F')) { num1[RXRFID[i]-'0']++; } } max1 = num1[0]; for(i=0;i<50;i++) { if(max1<num1[i]) { max1 = num1[i]; //次数 max_char = i+0x30; } } max2 = num1[0]; for(i=0;i<50;i++) //第二多字符 { if((num1[i] >= max2) && (num1[i] < max1)) { max2 = num1[i]; max_char2 = i+0x30; } }

时间: 2024-03-30 11:34:20 浏览: 10
这段代码的作用是统计一个字符串中每个字符出现的次数,并找出出现次数最多的字符和第二多的字符。它首先使用一个数组 num1,记录每个十六进制字符出现的次数。然后它使用两个循环来找出出现次数最多和第二多的字符。在第一个循环中,它遍历整个字符串,如果字符是一个数字或者大写字母 A 到 F,它就会增加对应的计数器。在第二个循环中,它遍历整个 num1 数组,找出出现次数最多和第二多的字符。最后,它将这些字符存储在变量 max_char 和 max_char2 中。
相关问题

void CreatMGraph(MGraph &G) { int i,j,k; scanf("%d,%d",&G.vexnum,&G.arcnum); for(i=0;i<G.vexnum;i++) for(j=0;j<G.vexnum;j++) G.arcs[i][j]=0; for(i=0;i<G.vexnum;i++) scanf("%c",&G.vexs[i]); for(k=0;k<G.arcnum;k++) { scanf("%d,%d",&i,&j); G.arcs[i][j]=1; } for(i=0;i<G.arcnum;j++) { printf("%d:",i); for(j=0;j<G.vexnum;j++) { for(k=0;k<G.vexnum;k++) { if(G.arcs[j][k]==1) { printf(" %d",k); } } } printf("\n"); } }

这是一个创建无向图的邻接矩阵的函数,代码中存在一些问题,我来解释一下: ```c++ void CreatMGraph(MGraph &G) { int i,j,k; scanf("%d,%d",&G.vexnum,&G.arcnum); // 输入节点数和边数 for(i=0;i<G.vexnum;i++) for(j=0;j<G.vexnum;j++) G.arcs[i][j]=0; // 初始化邻接矩阵 for(i=0;i<G.vexnum;i++) scanf("%c",&G.vexs[i]); // 输入节点名称 for(k=0;k<G.arcnum;k++) // 输入每条边的两个节点 { scanf("%d,%d",&i,&j); G.arcs[i][j]=1; // 将邻接矩阵中对应的位置赋值为1 G.arcs[j][i]=1; // 对称位置也赋值为1,因为是无向图 } for(i=0;i<G.vexnum;i++) // 遍历每一个节点 { printf("%d:",i); for(j=0;j<G.vexnum;j++) // 遍历邻接矩阵中的每一行 { if(G.arcs[i][j]==1) // 如果当前节点和邻接矩阵中的节点j有连接 { printf(" %d",j); // 输出j节点的名称 } } printf("\n"); // 换行 } } ``` 代码中存在以下问题: 1. 在输入节点名称时,使用了`%c`格式化字符,这会导致输入时会把回车等非数字字符也读入,可以使用`%s`格式化字符串来输入节点名称,或者在输入节点名称前加上一个空格,如`scanf(" %c",&G.vexs[i])`。 2. 在遍历每一个节点时,输出格式有误。应该是输出当前节点的名称后,再遍历与该节点有连接的节点,输出这些节点的名称。 3. 在遍历每一个节点时,只需要遍历邻接矩阵中的该节点所在行,而不需要遍历整个邻接矩阵,可以将第二个for循环的结束条件改为`j<G.vexnum`。 4. 在遍历每一个节点时,输出的节点名称应该从0开始,而不是从i开始。

对此代码进行优化#include <iostream> #include <vector> using namespace std; // 求最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } // 获取所有分母小于等于 n 的最简分数 vector<pair<int, int>> getFractions(int n) { vector<pair<int, int>> res; // 存储最简分数的数组 for (int i = 2; i <= n; i++) { // 枚举分母 i for (int j = 1; j < i; j++) { // 枚举分子 j if (gcd(i, j) == 1) { // 判断是否为最简分数 res.push_back({j, i}); // 存储最简分数 } } } return res; } int main() { int n; while (cin >> n && n != 0 && n<=100) { // 循环读入每个正整数 vector<pair<int, int>> res = getFractions(n); // 求解最简分数 for (auto p : res) { // 遍历最简分数数组 cout << p.first << "/" << p.second << " "; // 输出最简分数 } cout << endl; } return 0; }

对于这段代码,可以进行如下优化: 1. 在判断是否为最简分数时,可以将判断i和j是否互质的操作提取出来,使用一个单独的函数进行判断,可以减少gcd函数的调用次数。 2. 对于每个正整数n,可以使用一个数组存储小于等于n的所有质数,然后在判断i和j是否互质时,只需要判断j是否为n以内的质数即可,因为i已经是n以内的数,只有当j为质数时才有可能是最简分数,因此不需要枚举所有的j。 3. 在输出最简分数时,可以使用字符串流stringstream,将分子和分母转换成字符串后拼接输出,可以避免使用多个输出操作符<<。 优化后的代码如下所示: ``` #include <iostream> #include <vector> #include <sstream> #include <cmath> using namespace std; // 判断两个数是否互质 bool isCoprime(int a, int b) { return gcd(a, b) == 1; } // 获取所有分母小于等于 n 的最简分数 vector<pair<int, int>> getFractions(int n) { vector<pair<int, int>> res; // 存储最简分数的数组 vector<int> primes; // 存储小于等于n的所有质数 primes.push_back(2); // 2是第一个质数 for (int i = 3; i <= n; i++) { bool isPrime = true; for (auto p : primes) { if (p > sqrt(i)) { break; } if (i % p == 0) { isPrime = false; break; } } if (isPrime) { primes.push_back(i); } } for (int i = 2; i <= n; i++) { // 枚举分母 i for (auto p : primes) { if (p > i) { break; } if (i % p == 0) { goto next_i; // i不是质数,跳过 } } for (int j = 1; j < i; j++) { // 枚举分子 j if (j > n || !isCoprime(i, j)) { continue; } res.push_back({j, i}); // 存储最简分数 } next_i: continue; } return res; } int main() { int n; while (cin >> n && n != 0 && n <= 100) { // 循环读入每个正整数 vector<pair<int, int>> res = getFractions(n); // 求解最简分数 for (auto p : res) { // 遍历最简分数数组 stringstream ss; ss << p.first << "/" << p.second << " "; cout << ss.str(); // 输出最简分数 } cout << endl; } return 0; } ``` 经过优化后,代码的可读性和执行效率都得到了提高。

相关推荐

检查下列代码错误#include<bits/stdc++.h> using namespace std; char s[13][20]={'\0'}; struct ArcNode { int adjest; ArcNode *next; }; typedef struct { int vertex; int count; ArcNode firstedge; } VNode; class AdjGraph { private: int VertexNum; int ArcNum; public: VNode adjlist[100]; AdjGraph(int a[],int n,int e); ~AdjGraph(); }; AdjGraph::AdjGraph(int a[],int n,int e) { int i,j,k; VertexNum=n; ArcNum=e; for(i=1;i<=VertexNum;i++) { adjlist[i].vertex=a[i]; adjlist[i].firstedge=NULL; } int q; for(k=0;k<ArcNum;k++) { char s2[20]={'\0'}; char s3[20]={'\0'}; char s0[20]={'\0'}; cin>>s2; cin>>s3; for(q=1;q<=n;q++) { strcpy(s0,s[q]);/**/ if(strcmp(s0,s2)==0) i=q; if(strcmp(s0,s3)==0) j=q; } ArcNode s=new ArcNode; s->adjest=j; s->next=adjlist[i].firstedge; adjlist[i].firstedge=s; } } AdjGraph::~AdjGraph() { } void TopSort(AdjGraph G,int n) { int i,j,l=0; int b[100]={0}; int top=-1; stack<int> s; ArcNode p; for (i=1;i<=n;i++) G->adjlist[i].count=0; for (i=1;i<=n;i++) { p=G->adjlist[i].firstedge; while (p!=NULL) { G->adjlist[p->adjest].count++; p=p->next; } } for (i=n;i>0;i--) if (G->adjlist[i].count==0) { s.push(i); } while (top>-1) { i=s.top(); s.pop(); b[l]=i; l++; p=G->adjlist[i].firstedge; while (p!=NULL) { j=p->adjest; G->adjlist[j].count--; if (G->adjlist[j].count==0) { s.push(j); } p=p->next; //找下一个邻接点 } } if(l!=n) { cout<<"False"; } else { for(i=0;i<l;i++) { cout<<s[b[i]]; if(i!=n-1) cout<<endl; } } } int main() { int n,e,i; ArcNode p; cin>>n>>e; char s1[20]={'\0'}; for(i=1;i<=n;i++) { cin>>s1; strcpy(s[i],s1); } int a[100]={0}; for(i=1;i<=n;i++) { a[i]=i; } AdjGraph A(a,n,e); / for(i=1;i<=n;i++) { cout<<A.adjlist[i].vertex<<"--->"; p=A.adjlist[i].firstedge; while(p!=NULL) { cout<adjest<<"--->"; p=p->next; } cout<<endl; } */ AdjGraph *G=&A; TopSort(G,n); return 0; }

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。