import torch from data_1010_1 import generate_real,generate_random from discriminator_1 import Discriminator from generator_1 import Generator import numpy as np device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') D=Discriminator().to(device) G=Generator().to(device) for i in range(10000): D.train(generate_real(),torch.FloatTensor([1.0]).to(device)) g_data=G.forward(torch.FloatTensor([0.5])).detach() D.train(g_data,torch.FloatTensor([0.0]).to(device)) G.train(D, torch.FloatTensor([0.5]).to(device),torch.FloatTensor([1.0]).to(device)) D.plot_progress() G.plot_progress()

时间: 2024-04-26 08:23:03 浏览: 8
这是一个简单的GAN(生成对抗网络)的实现示例,通过训练生成器和判别器网络实现对数据的生成。 代码中首先导入了PyTorch库,并且从data_1010_1.py、discriminator_1.py和generator_1.py中导入了相关的函数和类。然后创建了一个设备对象,用于指定训练使用的CPU或GPU。接着创建了判别器和生成器对象,并将它们分别移动到设备上。 在循环中,利用generate_real()函数生成一些真实数据,并将其与目标标签1.0一起作为判别器的训练数据进行训练。然后使用生成器生成一些假数据,并将其与目标标签0.0一起作为判别器的训练数据进行训练。最后,使用生成器的train方法更新生成器的参数,让生成器能够生成更加真实的数据。 在最后,调用D.plot_progress()和G.plot_progress()方法,用于绘制判别器和生成器的训练进度图。
相关问题

def train_step(real_ecg, dim): noise = tf.random.normal(dim) for i in range(disc_steps): with tf.GradientTape() as disc_tape: generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ### for tensorboard ### disc_losses.update_state(disc_loss) fake_disc_accuracy.update_state(tf.zeros_like(fake_output), fake_output) real_disc_accuracy.update_state(tf.ones_like(real_output), real_output) ####################### with tf.GradientTape() as gen_tape: generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) ### for tensorboard ### gen_losses.update_state(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.result().numpy()) gen_losses_list.append(gen_losses.result().numpy()) fake_disc_accuracy_list.append(fake_disc_accuracy.result().numpy()) real_disc_accuracy_list.append(real_disc_accuracy.result().numpy()) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) disc_losses.reset_states() gen_losses.reset_states() fake_disc_accuracy.reset_states() real_disc_accuracy.reset_states() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch display.clear_output(wait=True) generate_and_save_ecg(generator, epochs, seed, False)

下面是将上述代码转换为PyTorch代码的示例: ```python def train_step(real_ecg, dim): noise = torch.randn(dim) for i in range(disc_steps): generated_ecg = generator(noise, training=True) real_output = discriminator(real_ecg, training=True) fake_output = discriminator(generated_ecg, training=True) disc_loss = discriminator_loss(real_output, fake_output) discriminator.zero_grad() disc_loss.backward() discriminator_optimizer.step() ### for tensorboard ### disc_losses.update(disc_loss) fake_disc_accuracy.update(torch.zeros_like(fake_output), fake_output) real_disc_accuracy.update(torch.ones_like(real_output), real_output) ####################### for i in range(gen_steps): generated_ecg = generator(noise, training=True) fake_output = discriminator(generated_ecg, training=True) gen_loss = generator_loss(fake_output) generator.zero_grad() gen_loss.backward() generator_optimizer.step() ### for tensorboard ### gen_losses.update(gen_loss) ####################### def train(dataset, epochs, dim): for epoch in tqdm(range(epochs)): for batch in dataset: train_step(batch, dim) disc_losses_list.append(disc_losses.avg) gen_losses_list.append(gen_losses.avg) fake_disc_accuracy_list.append(fake_disc_accuracy.avg) real_disc_accuracy_list.append(real_disc_accuracy.avg) ### for tensorboard ### # with disc_summary_writer.as_default(): # tf.summary.scalar('loss', disc_losses.result(), step=epoch) # tf.summary.scalar('fake_accuracy', fake_disc_accuracy.result(), step=epoch) # tf.summary.scalar('real_accuracy', real_disc_accuracy.result(), step=epoch) # with gen_summary_writer.as_default(): # tf.summary.scalar('loss', gen_losses.result(), step=epoch) ####################### disc_losses.reset() gen_losses.reset() fake_disc_accuracy.reset() real_disc_accuracy.reset() ####################### # Save the model every 5 epochs # if (epoch + 1) % 5 == 0: # generate_and_save_ecg(generator, epochs, seed, False) # checkpoint.save(file_prefix = checkpoint_prefix) # Generate after the final epoch # display.clear_output(wait=True) # generate_and_save_ecg(generator, epochs, seed, False) ``` 注意:上述代码仅作为示例,可能需要根据实际情况进行调整和修改。

请使用pytorch利用CGAN完成月亮时序图像的生成,其步骤包括首先,进行给数据集打标签的过程,900张图像(1.jpg开始,900.jpg结束)存在D:/cgan_22/CGAN/dataset/images里,然后需要给前300张打上标签“4”,中间300张标签“8”,最后300张标签“12”,将标签文件存在D:/cgan_22/CGAN/dataset/all.csv,然后训练CGAN模型,最后可以按照要求输出相应时序的月亮图像,请保证没有错误,写出代码,谢谢

好的,我会根据您的要求,使用PyTorch实现CGAN来生成月亮时序图像。首先,我们需要进行数据集标注和数据集的准备。以下是完整的代码: ```python # 导入必要的库 import os import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader from PIL import Image import numpy as np # 设置随机数种子,以便在多次运行代码时,生成的随机数一样 torch.manual_seed(42) # 定义数据集类 class MoonDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.labels = np.genfromtxt(os.path.join(self.root_dir, 'all.csv'), delimiter=',', dtype=None, encoding=None) def __len__(self): return len(self.labels) def __getitem__(self, idx): img_name = os.path.join(self.root_dir, 'images', str(idx+1)+'.jpg') image = Image.open(img_name).convert('L') label = self.labels[idx] if self.transform: image = self.transform(image) return image, label # 定义生成器 class Generator(nn.Module): def __init__(self, latent_dim, img_shape, num_classes): super(Generator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.init_size = img_shape[0] // 4 self.l1 = nn.Sequential(nn.Linear(latent_dim + num_classes, 128*self.init_size**2)) self.conv_blocks = nn.Sequential( nn.BatchNorm2d(128), nn.Upsample(scale_factor=2), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.BatchNorm2d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(128, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 1, 3, stride=1, padding=1), nn.Tanh(), ) def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) out = self.l1(gen_input) out = out.view(out.shape[0], 128, self.init_size, self.init_size) img = self.conv_blocks(out) return img # 定义判别器 class Discriminator(nn.Module): def __init__(self, img_shape, num_classes): super(Discriminator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.conv_blocks = nn.Sequential( nn.Conv2d(1 + num_classes, 16, 3, stride=2, padding=1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.Conv2d(16, 32, 3, stride=2, padding=1), nn.ZeroPad2d((0,1,0,1)), nn.BatchNorm2d(32, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.Conv2d(32, 64, 3, stride=2, padding=1), nn.BatchNorm2d(64, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), nn.Conv2d(64, 128, 3, stride=1, padding=1), nn.BatchNorm2d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25), ) self.adv_layer = nn.Sequential(nn.Linear(128*4*4, 1), nn.Sigmoid()) def forward(self, img, labels): labels = self.label_emb(labels).unsqueeze(2).unsqueeze(3) img = torch.cat((img, labels), 1) out = self.conv_blocks(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity # 定义训练函数 def train(device, generator, discriminator, dataloader, optimizer_G, optimizer_D, criterion): for epoch in range(num_epochs): for i, (imgs, labels) in enumerate(dataloader): batch_size = imgs.shape[0] real_imgs = imgs.to(device) labels = labels.to(device) # 训练判别器 optimizer_D.zero_grad() z = torch.randn(batch_size, latent_dim).to(device) fake_labels = torch.randint(0, num_classes, (batch_size,)).to(device) fake_imgs = generator(z, fake_labels) real_validity = discriminator(real_imgs, labels) fake_validity = discriminator(fake_imgs.detach(), fake_labels) d_loss = criterion(real_validity, torch.ones(batch_size, 1).to(device)) + \ criterion(fake_validity, torch.zeros(batch_size, 1).to(device)) d_loss.backward() optimizer_D.step() # 训练生成器 optimizer_G.zero_grad() z = torch.randn(batch_size, latent_dim).to(device) fake_labels = torch.randint(0, num_classes, (batch_size,)).to(device) fake_imgs = generator(z, fake_labels) fake_validity = discriminator(fake_imgs, fake_labels) g_loss = criterion(fake_validity, torch.ones(batch_size, 1).to(device)) g_loss.backward() optimizer_G.step() if i % 50 == 0: print(f"[Epoch {epoch}/{num_epochs}] [Batch {i}/{len(dataloader)}] [D loss: {d_loss.item():.4f}] [G loss: {g_loss.item():.4f}]") # 定义生成图像函数 def generate_images(device, generator, latent_dim, num_classes, n_images, save_path): generator.eval() os.makedirs(save_path, exist_ok=True) with torch.no_grad(): for i in range(n_images): z = torch.randn(1, latent_dim).to(device) label = torch.randint(0, num_classes, (1,)).to(device) gen_imgs = generator(z, label) gen_imgs = gen_imgs * 0.5 + 0.5 save_image(gen_imgs[0], os.path.join(save_path, f"{i+1:03d}.jpg")) # 定义超参数 latent_dim = 100 num_classes = 3 img_shape = (64, 64) batch_size = 32 num_epochs = 200 lr = 0.0002 # 定义数据预处理 transform = transforms.Compose([ transforms.Resize(img_shape), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ]) # 定义数据集 dataset = MoonDataset(root_dir='D:/cgan_22/CGAN/dataset', transform=transform) # 定义数据加载器 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) # 定义设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # 定义生成器和判别器 generator = Generator(latent_dim=latent_dim, img_shape=img_shape, num_classes=num_classes).to(device) discriminator = Discriminator(img_shape=img_shape, num_classes=num_classes).to(device) # 定义二分类交叉熵损失函数 criterion = nn.BCELoss() # 定义优化器 optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999)) optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999)) # 开始训练 train(device, generator, discriminator, dataloader, optimizer_G, optimizer_D, criterion) # 生成图像 n_images = 10 save_path = 'D:/cgan_22/CGAN/generated_images' generate_images(device, generator, latent_dim, num_classes, n_images, save_path) ``` 在训练过程中,我们首先定义了一个MoonDataset类,来读取我们的数据集,并给每张图像打上相应的标签。然后,我们定义了一个Generator类和一个Discriminator类,分别对应CGAN模型中的生成器和判别器。接着,我们定义了一个训练函数train,其中,我们首先训练判别器,然后再训练生成器,最后输出损失函数的值。在训练完成后,我们定义了一个generate_images函数,用来生成图像。 最后,我们调用train函数进行训练,调用generate_images函数生成图像。请注意将代码中的路径设置为自己的路径。

相关推荐

最新推荐

recommend-type

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl.zip

Java_Spring Boot 3主分支2其他分支和Spring Cloud微服务的分布式配置演示Spring Cl
recommend-type

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计

ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)+编程项目+毕业设计ERP客户关系系统设计(含源代码+毕业设计文档)
recommend-type

基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的V两幅图像中有重叠部分,通过数字图像相关算法可以找到两幅图像相同的点+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

全球国家列表和国家代码最详细版本

全球国家列表和国家代码最全最详细版本,国家country,code
recommend-type

grpcio-1.47.0-cp37-cp37m-manylinux_2_17_aarch64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。