波士顿房价数据集中,遗传算法和粒子群算法优化随机森林的代码
时间: 2023-06-12 07:04:35 浏览: 197
遗传算法和粒子群优化算法
5星 · 资源好评率100%
以下是使用遗传算法和粒子群算法优化随机森林的代码:
使用遗传算法优化随机森林:
```python
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from geneticalgorithm import geneticalgorithm as ga
# 加载数据集
boston = load_boston()
X, y = boston.data, boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义优化函数
def fitness_function(X):
n_estimators = int(X[0])
max_depth = int(X[1])
max_features = int(X[2])
min_samples_split = int(X[3])
min_samples_leaf = int(X[4])
# 训练模型
rf = RandomForestRegressor(n_estimators=n_estimators,
max_depth=max_depth,
max_features=max_features,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
random_state=42)
rf.fit(X_train, y_train)
# 计算均方误差
y_pred = rf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
return -mse
# 定义参数范围
varbound = np.array([[10, 200], # n_estimators
[1, 50], # max_depth
[1, 13], # max_features
[2, 50], # min_samples_split
[1, 50]]) # min_samples_leaf
# 使用遗传算法进行优化
model = ga(function=fitness_function, dimension=5, variable_type='int', variable_boundaries=varbound)
model.run()
```
使用粒子群算法优化随机森林:
```python
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from pyswarm import pso
# 加载数据集
boston = load_boston()
X, y = boston.data, boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义优化函数
def fitness_function(X):
n_estimators = int(X[0])
max_depth = int(X[1])
max_features = int(X[2])
min_samples_split = int(X[3])
min_samples_leaf = int(X[4])
# 训练模型
rf = RandomForestRegressor(n_estimators=n_estimators,
max_depth=max_depth,
max_features=max_features,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
random_state=42)
rf.fit(X_train, y_train)
# 计算均方误差
y_pred = rf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
return mse
# 定义参数范围
lb = [10, 1, 1, 2, 1]
ub = [200, 50, 13, 50, 50]
# 使用粒子群算法进行优化
xopt, fopt = pso(fitness_function, lb, ub, swarmsize=100, maxiter=100)
```
阅读全文