动态规划算法和分治法的差别

时间: 2023-09-03 19:28:04 浏览: 32
### 回答1: 动态规划算法和分治法都是常用的算法思想,但二者有很大的不同点。 1. 问题类型不同:动态规划算法主要用于求解最优解问题,如最大子序列和、最长递增子序列等;分治算法则主要用于分解问题,如归并排序、快速排序等。 2. 问题求解方式不同:动态规划算法是通过找到子问题的最优解来推导出整个问题的最优解,具有重叠子问题和最优子结构两个特点;分治算法则是将问题分解成若干个子问题,然后通过分治求解子问题,再将子问题的解合并得到原问题的解。 3. 算法时间复杂度不同:动态规划算法通常需要使用一张表来存储子问题的解,因此空间复杂度较高,但时间复杂度比分治算法更低,通常为O(n^2)或O(nlogn);分治算法的时间复杂度通常为O(nlogn),但空间复杂度较低。 4. 适用范围不同:动态规划算法适用于有重叠子问题和最优子结构的问题,如背包问题、最长公共子序列等;分治算法适用于可分解成若干个子问题的问题,如排序、查找等。 总之,动态规划算法和分治算法都有其优点和适用范围,需要根据具体问题选择合适的算法。 ### 回答2: 动态规划算法和分治法是两种常用的问题求解方法,它们在解决问题时有着不同的使用策略和思想。 动态规划算法是一种将复杂问题分解为多个小问题,并通过记录和利用子问题的解来求解整个问题的方法。动态规划算法通常通过建立一个表格来保存子问题的解,以避免重复计算。具体而言,动态规划算法将问题划分为多个相互关联的子问题,并利用子问题的解构建最优解。通过子问题间的递推关系,可以在计算过程中不断更新表格中的值,最终得到整个问题的最优解。动态规划算法通常适用于问题的求解过程具有重叠子问题性质,并且存在最优子结构的情况。 分治法是一种将复杂问题分解为多个独立的子问题,然后将子问题的解组合起来得到整个问题的解的方法。分治法通常将问题分割成若干个规模较小且结构相同的子问题,并递归地求解每个子问题的解。子问题的解合并成整个问题的解通常需要利用一些特定策略。分治法通常适用于问题可以被划分为多个相互独立的子问题,并且子问题的解可以合并成整个问题的解的情况。 动态规划算法和分治法的主要区别在于它们对子问题的处理方式不同。动态规划算法通过记录子问题的解来避免重复计算,而分治法则是将子问题的解独立求解并最终组合。因此,动态规划算法通常适用于具有重叠子问题性质的问题,而分治法通常适用于可以将问题划分为独立子问题的情况。 ### 回答3: 动态规划算法和分治法是两种常见的问题解决方法,它们的差别主要体现在以下几个方面。 首先,动态规划算法是一种将问题分解为相互重叠子问题并利用子问题的解来解决整个问题的方法。它通过构建一个动态规划表或数组来存储子问题的解,避免了重复计算,提高了效率。而分治法则是将问题划分为相互独立的子问题,通过递归地解决子问题并将结果合并得到原问题的解。 其次,动态规划算法适用于子问题的解有重叠的情况,即同一个子问题可能会被多次求解。通过保存已解决的子问题的解,动态规划算法可以避免重复计算,减少时间复杂度。而分治法则适用于子问题相互独立的情况,即每个子问题的解只需计算一次,没有重复计算的开销。 另外,动态规划算法通常需要一个二维表或数组来存储子问题的解,需要额外的空间来存储中间结果。而分治法则不需要额外的空间,因为每个子问题的解是独立存储的。 最后,动态规划算法一般采用自底向上的迭代方式求解子问题,先解决较小规模的子问题,再通过子问题的解来解决规模更大的子问题,最终得到原问题的解。而分治法则一般采用自顶向下的递归方式求解子问题,将原问题分解为更小规模的子问题,再递归地求解子问题,最后将子问题的解合并得到原问题的解。 总之,动态规划算法和分治法虽然都是常见的问题解决方法,但在问题分解、解决顺序、空间复杂度等方面存在差异。具体选择哪种方法取决于问题的特点和要求。

相关推荐

回答: 贪心算法、动态规划和分治法是三种常见的问题求解方法,它们在解决问题时有一些区别。 贪心算法是一种通过每一步的局部最优选择来达到整体最优解的方法。贪心算法对每个子问题的解决方案都做出选择,不能回退。贪心算法通常适用于一维问题,每一步的选择都直接影响最终结果。贪心算法的关键特征是问题具有最优子结构性质,即问题的最优解包含其子问题的最优解。贪心算法的优点是简单高效,但缺点是不能保证得到全局最优解。 动态规划是一种通过将问题分解为更小的子问题,并根据以前的选择结果进行选择的方法。动态规划可以解决二维或三维问题。动态规划的每一步选择都可以回退,根据以前的选择结果进行选择。动态规划的关键特征是问题具有最优子结构性质。动态规划的优点是可以得到全局最优解,但缺点是计算复杂度较高。 分治法是一种将问题分解为更小的子问题,并独立地解决每个子问题的方法。分治法通常适用于可以将问题分解为多个相互独立的子问题的情况。分治法的关键特征是将问题分解为更小的子问题,并将子问题的解合并为原问题的解。分治法的优点是可以并行处理子问题,但缺点是可能存在重复计算的问题。 综上所述,贪心算法通过每一步的局部最优选择来达到整体最优解,动态规划通过将问题分解为更小的子问题,并根据以前的选择结果进行选择,分治法将问题分解为更小的子问题,并独立地解决每个子问题。这些方法在解决问题时有不同的适用范围和特点。 #### 引用[.reference_title] - *1* *3* [贪心算法和动态规划以及分治法的区别](https://blog.csdn.net/qq_43539854/article/details/105940295)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [分治算法,动态规划算法和贪心算法的区别和联系](https://blog.csdn.net/CK1513710764/article/details/122032884)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
动态规划、分治法和贪心法都是常见的算法设计思想,它们在许多问题中都有广泛的应用。它们的异同点如下: 相同点: 1. 都是算法设计思想,适合解决一些复杂的问题。 2. 都需要将问题分解成一些子问题,从而便于处理。 不同点: 1. 动态规划和分治法都是将问题分解成子问题,但它们的求解方式不同。动态规划通常采用自底向上的方式,先求解子问题,再根据子问题的解求解整个问题;而分治法通常采用自顶向下的方式,将问题分解成子问题,然后递归求解子问题,最后将子问题的解合并得到整个问题的解。 2. 动态规划和贪心法都是在求解问题的过程中进行决策,但它们的决策方式不同。动态规划通常会保存子问题的解,以便后续使用;而贪心法则是每次做出当前看起来最优的选择,不考虑未来可能发生的变化。 3. 在问题的求解效率方面,动态规划通常需要使用额外的空间来保存子问题的解,因此空间复杂度较高;而贪心法和分治法通常不需要额外的空间,因此空间复杂度相对较低。但在时间复杂度方面,动态规划和分治法通常需要进行重复计算,因此时间复杂度较高;而贪心法通常只需要进行一次计算,因此时间复杂度相对较低。 总的来说,动态规划、分治法和贪心法都有其独特的优势和适用范围,在实际问题求解时需要根据具体情况选择合适的算法。
### 回答1: 分治策略是将一个复杂的问题分解成相互独立的子问题,然后递归地解决这些子问题,最后合并子问题的解得到原问题的解;动态规划是一种在求解复杂问题时寻求最优解的通用技术,它通过把原问题分解为相互依赖的子问题来实现;贪心算法是一种在每一步都采取在当前状态下最优的选择,从而希望导致结果是最优的算法;回溯法是一种试错法,它尝试分步解决一个复杂的问题,当它发现某一步无论如何也无法得到正确解决方案时,就会回溯到前一步并重新尝试。 ### 回答2: 分治策略、动态规划、贪心算法和回溯法都是解决问题的常用算法思想,它们在解决问题的方式和适用场景上有不同的特点。 分治策略是将问题分解为更小的子问题,在将子问题解决后进行合并得到整体问题的解。分治策略适用于问题可以分解为相同类型的子问题,并且子问题的解可以独立求解的情况。典型的应用包括快速排序和合并排序。 动态规划是一种以自底向上的方式逐步求解问题的优化方法。它将问题划分为重叠且相互依赖的子问题,使用一张表来记录子问题的解,通过解决子问题的最优解来解决整体问题。动态规划适用于满足最优子结构和无后效性的问题,常见的应用有背包问题和最短路径问题。 贪心算法是一种选择当前最优策略的方法,并且期望通过每一步的最优选择最终得到全局最优解。贪心算法通常没有全局优化的策略,而是通过选择局部最优解来进行推进。贪心算法适用于满足贪心选择性质和最优子结构的问题,例如霍夫曼编码和最小生成树问题。 回溯法是一种通过穷举所有可能的解来寻找问题解的方法。它采用试错的方式进行搜索,并在搜索过程中通过剪枝操作来减少不必要的计算。回溯法适用于问题解空间规模较小的情况,例如八皇后问题和0-1背包问题。 综上所述,分治策略通过分解子问题并合并解决整体问题,动态规划通过记录子问题的解来逐步求解整体问题,贪心算法通过每一步的最优选择来推进解决整体问题,回溯法通过穷举所有可能的解来寻找问题解。这四种算法思想各有不同的应用场景,根据问题的特点选择合适的算法可以更高效地解决问题。 ### 回答3: 分治策略、动态规划、贪心算法和回溯法是算法设计中常用的四种策略。它们具有各自独特的特点和应用场景。 分治策略是将问题划分为若干个规模较小且结构相似的子问题,通过递归地解决子问题,最后合并得到原问题的解。分治策略适用于问题可以分解为独立子问题,并且合并子问题的解不会产生冲突。典型应用如归并排序和快速排序。 动态规划是通过将问题划分为相互重叠的子问题,并求解子问题的解来求解原问题。动态规划通常适用于具有最优子结构的问题,可以通过空间换时间来提高效率。通过构建状态转移方程和建立递推关系,逐步计算得到最优解。典型应用如背包问题和最短路径问题。 贪心算法是一种每一步都选择当前状态下的最优解,以求得全局最优解的策略。它通过每一步的最优选择,局部地达到全局最优。贪心算法通常适用于问题具有贪心选择性质,即每个子问题都可以通过选取局部最优解而得到全局最优解。典型应用如霍夫曼编码和最小生成树算法。 回溯法是一种通过穷举所有可能的解,并逐步构建可行解的方法。它采用试错的方式,在每一步都通过选择一个可能的解决方案,然后进行尝试。若尝试失败,则回溯到上一步重新选择。回溯法适用于问题的解空间较小,且要求找出所有可能的解或满足特定条件的解。典型应用如八皇后问题和旅行商问题。 总之,分治策略、动态规划、贪心算法和回溯法都是解决问题的有效策略,通过合适的选择和设计,可以在不同的问题领域中获得最优解或满足特定条件的解。
### 回答1: 分治法是把一个复杂的问题分解成若干个相对简单的子问题,递归地求解子问题,而动态规划则是通过把原问题分解成若干个子问题,并存储子问题的答案,从而获得原问题的答案。两者的不同之处在于,分治法适用于求解最优解,而动态规划则是最优子结构和子问题重叠的情况。 ### 回答2: 分治法和动态规划法都是常用的算法设计方法,它们之间有一些明显的异同点。 首先,分治法和动态规划法的相似之处在于它们都使用了递归的思想。两种方法都将原问题分解成若干个子问题,并通过对子问题的求解来得到原问题的解。因此,它们都具有相同的时间复杂度,通常为O(n^2)或O(2^n)。 然而,两种方法的不同之处在于它们对子问题的处理方式。分治法通过将问题划分成彼此相互独立的子问题,并将子问题的解合并起来得到原问题的解。每个子问题的解只需计算一次,然后进行合并,避免了重复计算,从而提高了算法的效率。而动态规划法则将问题划分成依赖关系的子问题,并使用一个表格来记录每个子问题的解,以避免重复计算。动态规划法利用了子问题之间的重叠性质,通过填表的方式逐步求解子问题,并最终得到原问题的解。 此外,分治法和动态规划法在设计思路上也有所不同。分治法通常通过递归的方式将问题划分,然后使用多个递归函数进行求解。每个递归函数的输入和输出都是问题的一部分。而动态规划法则侧重于自底向上的求解方法,它将问题划分为子问题,并使用迭代的方式逐步求解。动态规划法通常使用一维或二维数组来记录中间结果,以实现时间和空间的优化。 总的来说,分治法和动态规划法都是重要的算法设计思想,它们在解决问题时有各自的优势和适用范围。分治法适用于问题可以划分为独立子问题,并且问题的子问题间没有重叠的情况。而动态规划法适用于问题的子问题具有重叠性质,并且需要使用表格记录中间结果。 ### 回答3: 分治法和动态规划法是两种常用的算法设计方法,它们有一些相似之处,也有一些不同之处。 首先,分治法和动态规划法的相似点在于都将原问题分解为几个子问题,并通过求解子问题来最终求解原问题。它们都是将复杂的问题简化为更小规模的子问题进行求解,然后再将子问题的解合并起来得到原问题的解。 其次,分治法和动态规划法的不同点在于它们对子问题的求解方式不同。分治法将原问题划分为互不相交的子问题,每个子问题独立求解,并将每个子问题的解合并起来得到原问题的解。而动态规划法则将原问题划分为重叠的子问题,通过存储子问题的解并重复利用,避免重复计算,从而提高算法的效率。 另外,动态规划法还具有最优子结构的特点,即原问题的最优解可以由子问题的最优解通过递推关系得到。这使得动态规划法在求解最优化问题时比分治法更加高效。 在应用上,分治法常用于解决可拆分为多个相似子问题的问题,如求解大规模矩阵的乘法、排序等。而动态规划法常用于求解具有最优子结构的问题,如求解背包问题、最长公共子序列等。 总而言之,分治法和动态规划法都是解决复杂问题的有效方法,它们在问题分解和求解方式上略有不同,因此在具体应用中根据问题的性质和特点选择合适的方法能够达到更好的效果。
1. 分治法:将一个大问题分解为若干个相互独立的子问题,递归地解决这些子问题,最后将各个子问题的解合并起来得到原问题的解。分治法的基本思想是将问题分解为较小的子问题,然后递归地求解这些子问题。 2. 回溯法:回溯法是一种通过穷举所有可能的解来寻找问题解的算法。在回溯法中,我们逐步构建一个候选解,并在构建的过程中判断这个候选解是否符合要求。如果不符合要求,就回溯到上一步,重新构建候选解。回溯法的基本思想是不断地尝试,如果尝试失败,就回溯到上一步重新尝试。 3. 分支限界法:分支限界法是一种通过剪枝来减少搜索空间的算法。在分支限界法中,我们将问题分解为若干个子问题,并通过剪枝来排除一些不可能产生解的子问题。分支限界法的基本思想是通过剪枝来减少搜索空间,以此来提高算法的效率。 4. 贪心法:贪心法是一种通过选择局部最优解来构造全局最优解的算法。在贪心法中,我们从问题的某个初始解开始,通过一系列局部最优选择来构造全局最优解。贪心法的基本思想是在每一步都选择当前状态下的最优解,以此来构造全局最优解。 5. 动态规划法:动态规划法是一种通过将问题分解为若干个子问题并将子问题的解保存起来来避免重复计算的算法。在动态规划法中,我们将问题分解为若干个子问题,并使用递推公式来计算子问题的解。动态规划法的基本思想是将问题分解为若干个子问题,并将子问题的解保存起来,以此来避免重复计算。
### 回答1: 分治法:分治法是将一个大的复杂问题分解为若干个小的相对简单的子问题,再求解每个子问题,最终求得整个问题的解。优势:把大问题分成若干个小问题,每个小问题都相对容易求解;应用场合:分治法在算法设计中应用最广泛的是求解最近点对问题,也可以用于求解其他问题,如求最大子序列和、求极大子矩阵等;时间复杂度:T(n)=2T(n/2)+O(n);空间复杂度:O(logn)。贪心法:贪心法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。优势:有时可以得到一个比较好的解;应用场合:贪心法应用最广泛的是用于最优化问题,如最小费用流、最短路径、最大化利润等;时间复杂度:O(n);空间复杂度:O(1)。动态规划法:动态规划法是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。优势:可以把复杂问题转换为更容易求解的子问题;应用场合:动态规划最常用于求解最优化问题,比如最小路径、最大子序列和等;时间复杂度:O(n^2);空间复杂度:O(n^2)。回溯法:回溯法是一种暴力搜索算法,它尝试利用递归搜索每一种可能的结果,从而找到最优解。优势:可以找到一个最优解;应用场合:回溯法常用于具有约束条件的优化问题,如八皇后问题、求解背包问题等;时间复杂度:O(n^k),其中k是问题的约束条件;空间复杂度:O(n)。分支限界法:分支限界法是一种将复杂问题分解为子问题的方法,它利用一些策略来减少子问题的数量,以达到降低时间复杂度的目的。优势:可以降低时间复杂度;应用场合:分支限界法常用于具有约束条件的优化问题,如旅行商问题、求解背包问题等;时间复杂度:O(bn),其中b为分支因子;空间复杂度:O(h),其中h为树的高度。 ### 回答2: 分治法:将问题划分为子问题,并分别解决每个子问题,最后合并子问题的解来得到原问题的解。性质是问题可以被划分为规模较小的子问题。特点是适用于问题的结构可划分且子问题之间相互独立。优势是能够降低问题的复杂度。应用场合包括排序算法、图论、动态规划等。时间复杂度通常为O(nlogn),空间复杂度为O(n)。 贪心法:每一步都选择当前情况下最优解,希望最终能得到全局最优解。性质是当前最优解可以导致全局最优解。特点是简单、高效,但不一定能得到最优解。优势是时间复杂度低。应用场合包括背包问题、调度问题等。时间复杂度通常为O(nlogn),空间复杂度为O(1)。 动态规划法:将问题划分为子问题,并存储子问题的解,通过递推式求解问题。性质是问题具有重叠子问题和最优子结构。特点是能够避免重复计算子问题,提高效率。优势是能够求解多阶段决策问题。应用场合包括最短路径问题、背包问题等。时间复杂度通常为O(n^2),空间复杂度为O(n)。 回溯法:通过枚举所有可能的解,并逐步构建候选解,当候选解满足问题要求时,得到正确解。性质是能够穷举所有可能的解空间。特点是需要搜索整个解空间,效率较低。优势是能够解决部分可行解的问题。应用场合包括八皇后问题、旅行商问题等。时间复杂度通常较高,取决于搜索树规模,空间复杂度为O(n)。 分支限界法:通过剪枝策略来减少搜索空间,从而提高搜索效率。性质是将问题划分为子问题,采用优先队列或优先级队列进行搜索。特点是能够剪枝去除不必要的子问题。优势是能够解决大规模问题。应用场合包括旅行商问题、任务调度问题等。时间复杂度取决于搜索的深度、剪枝效果和优先队列的使用情况,空间复杂度为O(n)。 ### 回答3: 分治法: 性质:将一个大的问题划分为多个子问题,子问题可以独立求解。 特点:递归地将问题划分为更小的子问题,然后将各个子问题的解合并起来得到原问题的解。 优势:容易理解和实现,能够解决大规模问题。 应用场合:排序算法(如归并排序、快速排序)、查找问题(如二分查找)等。 时间复杂度:一般为O(nlogn)。 空间复杂度:一般为O(n)。 贪心法: 性质:通过每次选择局部最优解来构建全局最优解。 特点:每次做出选择时,只考虑当前局部最优解,不考虑未来的结果。 优势:简单、高效,适用于求解一些最优化问题。 应用场合:霍夫曼编码、最小生成树算法(如Prim算法、Kruskal算法)等。 时间复杂度:一般为O(nlogn)。 空间复杂度:一般为O(1)。 动态规划法: 性质:通过将问题分解成更小的子问题,并记忆子问题的解,避免重复计算。 特点:具有最优子结构和重叠子问题。 优势:可以解决一些具有重叠子问题的问题,提高算法的效率。 应用场合:背包问题、最长公共子序列等。 时间复杂度:一般为O(n^2)。 空间复杂度:一般为O(n)。 回溯法: 性质:通过尝试所有可能的解,并在搜索过程中进行剪枝。 特点:可以通过深度优先搜索的方式进行实现。 优势:能够解决需要尝试所有可能情况的问题。 应用场合:八皇后问题、0-1背包问题等。 时间复杂度:一般为O(n!)。 空间复杂度:一般为O(n)。 分支限界法: 性质:通过剪枝策略,减少搜索空间,提高求解效率。 特点:通过优先队列等数据结构,选择最优的分支进行搜索。 优势:适用于求解优化问题,如旅行商问题、装箱问题等。 应用场合:旅行商问题、0-1背包问题等。 时间复杂度:一般为O(b^d)。 空间复杂度:一般为O(b^d)。

最新推荐

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立...

高级算法程序设计(头歌平台educoder)。

educoder平台高级程序算法实现、主要有分治法、贪心法、回溯法和动态规划!

动态规划教程 动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解求得原问题的解。与分治法不同的是,适合于动态规划法求解的问题,经分解求得的子问题往往不是互相独立的。若用分治法来解决这类问题,则分解得到的子问题的数目太多,以至于最后解决原问题需要耗费指数时间。然而,不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。如果我们能够保存解决的子问题的答案,而在需要时再找出已求得的答案,这样就可避免大量重复计算,从而得

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解求得原问题的解。与分治法不同的是,适合于动态规划法求解的问题,经分解求得的子问题往往不是互相独立...

动态规划 动态规划 动态规划

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立...

来凯医药(02105.HK)深度研究报告:Afuresertib有望美国报产,ActRIIA单抗增肌减脂潜力巨大.pdf

行业研究

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

麒麟v10 arm64 安装curl

麒麟v10是一种arm64架构的操作系统,因此可以使用curl命令进行安装。您可以按照以下步骤在麒麟v10 arm64上安装curl: 1. 打开终端或命令行界面。 2. 执行以下命令安装curl: ``` sudo apt-get update sudo apt-get install curl ``` 安装完成后,您就可以在麒麟v10 arm64系统上使用curl命令了。

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�