中药材分类实验中要求:调用MobileNet_v2模型,并与ResNet18模型结果比较,结合实验给出实现以上要求的代码
时间: 2024-03-03 20:50:08 浏览: 118
以下是基于PyTorch实现的中药材分类实验,包括调用MobileNet_v2模型并与ResNet18模型结果比较的代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义数据预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
# 加载数据集
trainset = datasets.ImageFolder('data/train', transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=32, shuffle=True, num_workers=4)
testset = datasets.ImageFolder('data/test', transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=32, shuffle=False, num_workers=4)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.model = models.resnet18(pretrained=True)
self.model.fc = nn.Linear(512, 10)
def forward(self, x):
return self.model(x)
# 定义损失函数和优化器
net_resnet = Net()
net_mobilenet = models.mobilenet_v2(pretrained=True)
net_mobilenet.classifier[1] = nn.Linear(1280, 10)
criterion = nn.CrossEntropyLoss()
optimizer_resnet = optim.SGD(net_resnet.parameters(), lr=0.001, momentum=0.9)
optimizer_mobilenet = optim.SGD(net_mobilenet.parameters(), lr=0.001, momentum=0.9)
# 训练模型
def train(net, optimizer, epoch):
net.train()
for batch_idx, (data, target) in enumerate(trainloader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(trainloader.dataset),
100. * batch_idx / len(trainloader), loss.item()))
def test(net):
net.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in testloader:
output = net(data)
test_loss += criterion(output, target).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(testloader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(testloader.dataset),
100. * correct / len(testloader.dataset)))
for epoch in range(1, 11):
train(net_resnet, optimizer_resnet, epoch)
test(net_resnet)
for epoch in range(1, 11):
train(net_mobilenet, optimizer_mobilenet, epoch)
test(net_mobilenet)
```
在以上代码中,我们首先定义了数据预处理的方法,然后加载了训练集和测试集。接着定义了一个使用ResNet18模型的分类器Net,并使用pretrained参数加载了预训练权重。然后定义了损失函数和优化器,分别使用SGD算法进行优化。接下来训练模型,并在每个epoch结束后使用测试集测试模型的性能。最后,我们定义了另一个使用MobileNet_v2模型的分类器,并重复了训练和测试的过程。通过比较两个模型在测试集上的准确率,我们可以得出它们的性能差异。
阅读全文