用matlab实现apriori算法
时间: 2023-09-13 08:11:28 浏览: 87
以下是使用Matlab实现Apriori算法的示例代码:
```
% 定义事务数据库
transactions = {'A','B','C','D','E';
'B','C','E';
'A','B','C','E';
'A','C','D','E';
'A','C','E'};
% 定义最小支持度和最小置信度
minSupport = 0.6;
minConfidence = 0.8;
% 第一步:扫描数据库,计算候选项集 C1 的支持度
C1 = {};
for i = 1:size(transactions, 1)
for j = 1:size(transactions, 2)
item = transactions{i,j};
if ~isempty(item) && ~any(strcmp(C1, item))
C1 = [C1, item];
end
end
end
supportData = containers.Map();
for i = 1:length(C1)
item = C1{i};
support = sum(cellfun(@(x) any(strcmp(x, item)), transactions)) / length(transactions);
if support >= minSupport
supportData(item) = support;
end
end
% 第二步:生成频繁项集
L = {keys(supportData)};
k = 2;
while ~isempty(L{k-1})
Ck = {};
for i = 1:length(L{k-1})
for j = i+1:length(L{k-1})
item1 = L{k-1}(i);
item2 = L{k-1}(j);
if isequal(item1{1}(1:k-2), item2{1}(1:k-2))
item = [item1{1}, item2{1}(k-1)];
if ~any(strcmp(Ck, item))
Ck = [Ck, item];
end
end
end
end
supportDataK = containers.Map();
for i = 1:length(Ck)
item = Ck{i};
support = sum(cellfun(@(x) all(ismember(item, x)), transactions)) / length(transactions);
if support >= minSupport
supportDataK(item) = support;
end
end
L{k} = keys(supportDataK);
supportData = [supportData; supportDataK];
k = k + 1;
end
% 第三步:生成关联规则
rules = {};
for i = 2:length(L)
for j = 1:length(L{i})
item = L{i}{j};
for k = 1:length(item)
item1 = item(1:k-1);
item2 = item(k:end);
confidence = supportData(item) / supportData(item1);
if confidence >= minConfidence
rules{end+1} = {item1, item2, confidence};
end
end
end
end
% 输出结果
disp('Frequent itemsets:');
disp(L);
disp('Association rules:');
for i = 1:length(rules)
rule = rules{i};
item1 = strjoin(rule{1}, ',');
item2 = strjoin(rule{2}, ',');
confidence = rule{3};
disp([item1, ' ==> ', item2, ', confidence = ', num2str(confidence)]);
end
```
该代码中的 `transactions` 变量表示事务数据库,其中每行表示一个事务,每列表示事务中的一个项。`minSupport` 和 `minConfidence` 分别表示最小支持度和最小置信度。代码首先扫描数据库,计算候选项集 C1 的支持度,然后生成频繁项集和关联规则。最后输出结果。
阅读全文