matlab短时傅里叶变换和逆短时傅里叶变换
时间: 2023-07-14 08:59:12 浏览: 138
短时傅里叶变化时频工具箱_短时傅里叶变换_matlab工具箱_短时傅里叶_源码
5星 · 资源好评率100%
MATLAB中的短时傅里叶变换(STFT)和逆短时傅里叶变换(ISTFT)是用于时频分析的常用工具。以下是它们的示例代码:
短时傅里叶变换(STFT):
```matlab
% 定义信号参数
fs = 1000; % 采样频率
t = 0:1/fs:1-1/fs; % 时间向量
f1 = 50; % 信号频率
f2 = 120; % 信号频率
x = cos(2*pi*f1*t) + cos(2*pi*f2*t); % 信号
% 短时傅里叶变换
window = hamming(256); % 窗函数
noverlap = 128; % 重叠长度
nfft = 1024; % FFT长度
[S,F,T] = spectrogram(x,window,noverlap,nfft,fs); % 短时傅里叶变换
% 绘制谱图
figure;
surf(T,F,10*log10(abs(S)),'edgecolor','none');
axis tight;
view(0,90);
xlabel('Time (Seconds)');
ylabel('Hz');
```
逆短时傅里叶变换(ISTFT):
```matlab
% 设置STFT参数
win = 256; % 窗口大小
hop = 128; % 帧移
nfft = 1024; % FFT大小
% 执行逆变换
x_reconstructed = istft(S, win, hop, nfft);
% 绘制原始信号与重构信号的对比
t_reconstructed = (0:length(x_reconstructed)-1) / fs;
figure;
plot(t, x, 'b', t_reconstructed, x_reconstructed, 'r--');
xlabel('Time (Seconds)');
ylabel('Amplitude');
legend('Original Signal', 'Reconstructed Signal');
```
这段代码首先定义了一个包含两个频率分量的信号,并使用`hamming`函数定义了一个长度为256的窗函数。接着,使用`spectrogram`函数进行短时傅里叶变换,并将结果存储在`S`、`F`和`T`中。然后,使用`istft`函数执行逆短时傅里叶变换,将频域表示还原为时域信号`x_reconstructed`。最后,绘制原始信号和重构信号的对比图。
阅读全文