import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.5) t=np.arange(0.0,2.0,0.1) s=np.sin(t*np.pi) plt.subplot(2,2,1) #要生成两行两列,这是第一个图 import numpy as np import matplotlib.pyplot as plt x = np.arange(1,13) y1 = np.array([53673, 57571, 58905, 55239, 49661, 49510, 49163, 57311, 59187, 60074, 57109, 52885]) plt.plot(x, y1) plt.title('近13天登录人数') plt.show() plt.subplot(2,2,2) #两行两列,这是第二个图 import numpy as np import matplotlib.pyplot as plt plt.subplots_adjust(top=0.85) x = np.arange(12) y = np.array([70887, 64957, 62508, 66471, 54972, 46245, 64083, 67090, 64991, 88504, 79404, 68253,]) bar_width = 0.3 plt.bar(x, y, tick_label=['1月', '2月', '3月', '4月', '5月', '6月', '7月', "8月", "9月", "10月", '11月', '12月'],width=bar_width) plt.title('近12个月人数') plt.show() plt.subplot(2,2,3)#两行两列,这是第三个图 import matplotlib.pyplot as plt plt.subplots_adjust(top=0.85) plt.style.use('fivethirtyeight') languages = ['steam', 'ubisoft'] popularity = [78,22] plt.pie(popularity) plt.tight_layout() plt.pie(popularity, labels=languages, autopct='%1.1f%%') plt.title('游戏平台登录占比') plt.subplot(2,2,4)#两行两列,这是第四个图 import numpy as np from matplotlib import pyplot as plt ages_x = [1, 2, 3, 4, 5, ] x_indexes = np.arange(len(ages_x)) width = 0.33 dev_y = [64050, 65168, 75588, 75590, 60097] py_dev_y = [57809, 56101, 70605, 63437, 56756] plt.bar(x_indexes, dev_y, width=width, label="2022") plt.bar(x_indexes + width, py_dev_y, width=width, label="2023") plt.xlabel("月份") plt.ylabel("平均在线人数") plt.title("2022和2023一到五月在线人数对比") plt.legend() plt.xticks(ticks = x_indexes, labels = ages_x) plt.show()
时间: 2023-10-09 07:08:17 浏览: 260
你刚才的代码中,第三个子图中的饼图有一些问题。虽然你使用了pie函数绘制了饼图,但是没有正确地添加标签和百分比。正确的代码应该是这样的:
```python
plt.subplot(2,2,3)
plt.subplots_adjust(top=0.85)
plt.style.use('fivethirtyeight')
languages = ['steam', 'ubisoft']
popularity = [78,22]
plt.pie(popularity, labels=languages, autopct='%1.1f%%')
plt.title('游戏平台登录占比')
plt.show()
```
这样做可以让饼图正确地显示游戏平台的登录占比,并显示出每个部分所占的百分比。
相关问题
#定义绘制K线图的函数 def pandas_candlestick_ohlc(stock_data, otherseries=None): # 设置绘图参数,主要是坐标轴 mondays = WeekdayLocator(MONDAY) alldays = DayLocator() dayFormatter = DateFormatter('%d') fig, ax = plt.subplots() fig.subplots_adjust(bottom=0.2) if stock_data.index[-1] - stock_data.index[0] < pd.Timedelta('730 days'): weekFormatter = DateFormatter('%b %d') ax.xaxis.set_major_locator(mondays) ax.xaxis.set_minor_locator(alldays) else: weekFormatter = DateFormatter('%b %d, %Y') ax.xaxis.set_major_formatter(weekFormatter) ax.grid(True) # 创建K线图 stock_array = np.array(stock_data.reset_index()[['date','open','high','low','close']]) stock_array[:,0] = date2num(stock_array[:,0]) candlestick_ohlc(ax, stock_array, colorup = "red", colordown="green", width=0.6) plt.title('厦门象屿', fontsize='9') # 可同时绘制其他折线图 if otherseries is not None: for each in otherseries: plt.plot(stock_data[each], label=each) plt.legend() ax.xaxis_date() ax.autoscale_view() plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right') plt.savefig(f'E:/应统案例大赛/附件1-股票交易数据/k线图a4.jpg') plt.show() stock_data.index.name='date' #日期为索引列 #对股票数据的列名重新命名 stock_data=stock_data[['open','high','low','close','chengjiaoe','zongshizhi','huanshoulv','shiyinglv','shijinglv']] data=stock_data.loc['2022-11-03':'2022-12-14'] #获取某个时间段内的时间序列数据 pandas_candlestick_ohlc(data)修改代码,使横坐标刻度小点
你可以在 `pandas_candlestick_ohlc()` 函数中添加一个参数 `figsize` 来控制绘图的大小,进而调整横坐标刻度的大小。例如:
```
import matplotlib.pyplot as plt
from matplotlib.dates import WeekdayLocator, DayLocator, DateFormatter, date2num
from mpl_finance import candlestick_ohlc
# 定义绘制 K 线图的函数
def pandas_candlestick_ohlc(stock_data, otherseries=None, figsize=(12, 6)):
# 设置绘图参数,主要是坐标轴
mondays = WeekdayLocator(MONDAY)
alldays = DayLocator()
dayFormatter = DateFormatter('%d')
fig, ax = plt.subplots(figsize=figsize)
fig.subplots_adjust(bottom=0.2)
if stock_data.index[-1] - stock_data.index[0] < pd.Timedelta('730 days'):
weekFormatter = DateFormatter('%b %d')
ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_minor_locator(alldays)
else:
weekFormatter = DateFormatter('%b %d, %Y')
ax.xaxis.set_major_formatter(weekFormatter)
ax.grid(True)
# 创建 K 线图
stock_array = np.array(stock_data.reset_index()[['date','open','high','low','close']])
stock_array[:,0] = date2num(stock_array[:,0])
candlestick_ohlc(ax, stock_array, colorup = "red", colordown="green", width=0.6)
plt.title('厦门象屿', fontsize='9')
# 可同时绘制其他折线图
if otherseries is not None:
for each in otherseries:
plt.plot(stock_data[each], label=each)
plt.legend()
ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
plt.savefig('E:/应统案例大赛/附件1-股票交易数据/k线图a4.jpg')
plt.show()
stock_data.index.name = 'date' # 日期为索引列
# 对股票数据的列名重新命名
stock_data = stock_data[['open', 'high', 'low', 'close', 'chengjiaoe', 'zongshizhi', 'huanshoulv', 'shiyinglv', 'shijinglv']]
data = stock_data.loc['2022-11-03':'2022-12-14'] # 获取某个时间段内的时间序列数据
pandas_candlestick_ohlc(data, figsize=(8, 4)) # 修改 figsize 参数,使横坐标刻度小点
```
在这里,我们在 `pandas_candlestick_ohlc()` 函数中添加了一个参数 `figsize`,并将其传递到 `plt.subplots()` 方法中,用于控制绘图的大小。你可以根据需要调整 `figsize` 的值。
matplotlib调间距
在matplotlib库中,调整图形元素之间的间距通常涉及到设置特定的参数,以便控制图表的布局和美观度。以下是几个关键的间距调整选项:
1. `figure.subplotpars`属性:这个属性包含了SubplotParams类,它包含了一些调整子图间距、边距的参数,如`left`, `right`, `bottom`, `top`, `wspace`(水平空间),`hspace`(垂直空间)。你可以通过`plt.subplots_adjust()`函数来全局调整,或者给每个子图设置。
```python
import matplotlib.pyplot as plt
fig = plt.figure()
subplots_params = fig.subplotpars
subplots_params.wspace = 0.5 # 设置水平空间
subplots_params.hspace = 0.5 # 设置垂直空间
```
2. `gridspec`模块:如果你需要更精确地控制网格的间距,可以使用GridSpec,它允许你单独设置每行和每列的间距。
```python
from mpl_toolkits.axes_grid1 import GridSpec
gs = GridSpec(2, 2)
ax1 = fig.add_subplot(gs[0, :])
ax2 = fig.add_subplot(gs[1, 0], right=0.7) # 右侧留出0.7的空间
```
阅读全文
相关推荐
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![7z](https://img-home.csdnimg.cn/images/20241231044736.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)