dbpn pytorch
时间: 2023-10-18 19:25:46 浏览: 108
pytorch
嗨!关于DBPN(Deep Back-Projection Networks)在PyTorch中的实现,您可以参考以下代码片段:
首先,您需要导入所需的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,定义DBPN模型的主要组件:
```python
class ResidualBlock(nn.Module):
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out += residual
return out
class UpsampleBlock(nn.Module):
def __init__(self, in_channels, out_channels, scale_factor):
super(UpsampleBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels * scale_factor ** 2, kernel_size=3, stride=1, padding=1)
self.pixel_shuffle = nn.PixelShuffle(scale_factor)
def forward(self, x):
out = self.conv(x)
out = self.pixel_shuffle(out)
return out
class DBPN(nn.Module):
def __init__(self, upscale_factor, num_channels, base_channels, num_stages, num_residuals):
super(DBPN, self).__init__()
self.upscale_factor = upscale_factor
self.num_stages = num_stages
self.entry = nn.Conv2d(num_channels, base_channels, kernel_size=3, stride=1, padding=1)
self.feature_extraction = nn.Conv2d(base_channels, base_channels, kernel_size=3, stride=1, padding=1)
self.residual_layers = nn.ModuleList([ResidualBlock(base_channels) for _ in range(num_residuals)])
self.upsampling_layers = nn.ModuleList([UpsampleBlock(base_channels, base_channels, upscale_factor) for _ in range(num_stages)])
self.exit = nn.Conv2d(base_channels, num_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = self.entry(x)
residual = x
x = self.feature_extraction(x)
out = []
for i in range(self.num_stages):
x = self.residual_layers[i](x)
out.append(self.upsampling_layers[i](x))
out = torch.cat(out, dim=1)
out = self.exit(out + residual)
return out
```
最后,您可以根据需要实例化DBPN模型并使用它进行训练或推断:
```python
upscale_factor = 2
num_channels = 3
base_channels = 64
num_stages = 7
num_residuals = 5
model = DBPN(upscale_factor, num_channels, base_channels, num_stages, num_residuals)
```
这只是一个基本的DBPN模型实现示例,您可以根据自己的需求进行修改和调整。希望对您有所帮助!如果您有其他问题,请随时提问。
阅读全文