实现一个最简单的从raw graph - Explainer -> subgraph -Predictor -> y 的pipeline, 其中Explainer 和Predictor 都用最基本的GCN模型就行。
时间: 2024-12-06 17:22:19 浏览: 11
实现这样一个从原始图到子图解释再到预测的简单pipeline,首先我们需要三个基本组件:数据预处理,GCNExplainer(用于提取子图的解释),以及GCNPredictor(基于子图进行预测)。这里以Python和PyTorch Geometric为例:
1. **数据预处理**:
```python
import torch_geometric.data as Data
from torch_geometric.transforms import ToSparseTensor
def preprocess_graph(raw_data):
data = Data(data=ToSparseTensor(raw_data.edge_index),
x=raw_data.node_features) # 将输入转换为稀疏张量格式
return data
```
2. **GCNExplainer** (假设使用注意力机制作为基础的解释器):
```python
class GCNExplainer(nn.Module):
def __init__(self, in_channels, out_channels, num_layers):
super(GCNExplainer, self).__init__()
self.encoder = nn.Sequential(*[gnn.GCNConv(in_channels if i==0 else out_channels, out_channels, normalize=False)
for i in range(num_layers)])
self.attention = nn.Linear(out_channels, 1) # 注意力头
def forward(self, data, target_node):
h = self.encoder(data.x)
attention_scores = self.attention(h[target_node])
attention_scores = F.softmax(attention_scores, dim=-1).unsqueeze(0) # 获取目标节点的注意力权重
subgraph_x = torch.spmm(data.adj_matrix, h * attention_scores).squeeze() # 提取子图特征
return subgraph_x
```
3. **GCNPredictor** (一个简单的GCN模型用于预测):
```python
class GCNPredictor(nn.Module):
def __init__(self, in_channels, hidden_channels, num_layers):
super(GCNPredictor, self).__init__()
self.predictor = nn.Sequential(
gnn.GCNConv(in_channels, hidden_channels),
nn.ReLU(),
gnn.GCNConv(hidden_channels, 1)
)
def forward(self, subgraph_x):
output = self.predictor(subgraph_x)
return output.view(-1) # 输出节点的预测值
```
4. **Pipeline实现**:
```python
def pipeline(graph, explainer, predictor, target_node):
graph = preprocess_graph(graph)
subgraph_x = explainer(graph, target_node)
prediction = predictor(subgraph_x)
return prediction
```
阅读全文