收缩自编码器降维 tensorflow
时间: 2023-10-06 21:10:49 浏览: 52
在 TensorFlow 中实现收缩自编码器(Sparse Autoencoder)可以通过以下步骤进行:
1. 导入 TensorFlow 库和其他必需的库:
```
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义输入数据的维度和隐藏层的神经元数:
```
input_dim = 784
hidden_dim = 64
```
3. 定义输入和输出占位符:
```
X = tf.placeholder(tf.float32, shape=[None, input_dim])
y = tf.placeholder(tf.float32, shape=[None, input_dim])
```
4. 定义编码器和解码器的权重和偏置:
```
weights = {
'encoder': tf.Variable(tf.random_normal([input_dim, hidden_dim])),
'decoder': tf.Variable(tf.random_normal([hidden_dim, input_dim]))
}
biases = {
'encoder': tf.Variable(tf.zeros([hidden_dim])),
'decoder': tf.Variable(tf.zeros([input_dim]))
}
```
5. 定义编码器和解码器的计算过程:
```
encoder = tf.nn.sigmoid(tf.add(tf.matmul(X, weights['encoder']), biases['encoder']))
decoder = tf.nn.sigmoid(tf.add(tf.matmul(encoder, weights['decoder']), biases['decoder']))
```
6. 定义损失函数和优化器:
```
loss = tf.reduce_mean(tf.square(y - decoder))
optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)
```
7. 定义训练过程:
```
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_x, _ = mnist.train.next_batch(128)
_, l = sess.run([optimizer, loss], feed_dict={X: batch_x, y: batch_x})
if i % 100 == 0:
print('Step %d, Loss: %f' % (i, l))
encoded_imgs = sess.run(encoder, feed_dict={X: mnist.test.images})
```
8. 可视化编码后的图像:
```
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
ax = plt.subplot(2, n, i + 1)
plt.imshow(mnist.test.images[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, n, i + 1 + n)
plt.imshow(encoded_imgs[i].reshape(8, 8))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
```
这样就可以使用 TensorFlow 实现收缩自编码器降维了。
阅读全文