残差神经网络matlab代码
时间: 2023-09-07 12:17:13 浏览: 129
以下是一个简单的残差神经网络的 MATLAB 代码示例:
```matlab
% 加载训练数据
load('data.mat');
% 定义神经网络结构
input_layer = imageInputLayer([28 28 1]);
conv_layer1 = convolution2dLayer(5, 20);
relu_layer1 = reluLayer();
conv_layer2 = convolution2dLayer(5, 20);
relu_layer2 = reluLayer();
residual_layer1 = additionLayer(2);
conv_layer3 = convolution2dLayer(5, 20);
relu_layer3 = reluLayer();
conv_layer4 = convolution2dLayer(5, 20);
relu_layer4 = reluLayer();
residual_layer2 = additionLayer(2);
pooling_layer = maxPooling2dLayer(2);
fully_connected_layer1 = fullyConnectedLayer(100);
fully_connected_layer2 = fullyConnectedLayer(10);
softmax_layer = softmaxLayer();
classification_layer = classificationLayer();
% 连接神经网络层
layers = [
input_layer
conv_layer1
relu_layer1
conv_layer2
relu_layer2
residual_layer1
conv_layer3
relu_layer3
conv_layer4
relu_layer4
residual_layer2
pooling_layer
fully_connected_layer1
fully_connected_layer2
softmax_layer
classification_layer
];
% 定义训练选项
options = trainingOptions('sgdm', ...
'MaxEpochs', 10, ...
'InitialLearnRate', 0.01, ...
'Verbose', true, ...
'Plots', 'training-progress');
% 训练神经网络
net = trainNetwork(train_data, train_labels, layers, options);
% 评估神经网络性能
test_predictions = classify(net, test_data);
accuracy = sum(test_predictions == test_labels) / numel(test_labels);
disp(['Accuracy: ' num2str(accuracy)]);
```
这个代码示例定义了一个简单的残差神经网络,用于对 MNIST 数据集进行数字分类。代码中的每一层都使用了 MATLAB 的内置函数进行定义,并且在 `layers` 变量中进行连接。训练选项通过 `trainingOptions` 函数进行定义,并且使用 `trainNetwork` 函数进行训练。最后,使用 `classify` 函数和测试数据对神经网络进行评估,并且计算分类准确率。
阅读全文