dqn和ddpg算法对比
时间: 2023-09-18 14:07:38 浏览: 346
SUMO自适应交通信号控制-DQN、DDPG、韦氏、最大压力、自组织交通灯_Python_Shell_下载.zip
5星 · 资源好评率100%
DQN (Deep Q-Network) 和 DDPG (Deep Deterministic Policy Gradient) 都是深度强化学习算法,但它们的应用场景略有不同。
DQN 是一种基于 Q-Learning 的深度强化学习算法,用于解决离散动作空间的问题。它使用一个神经网络来估计每个动作的 Q 值,然后根据 Q 值选择最佳的动作。DQN 可以处理复杂的状态空间,但对于连续的动作空间来说,它的应用会受到限制。
DDPG 是一种基于策略梯度的深度强化学习算法,用于解决连续动作空间的问题。DDPG 将 Q-Learning 和策略梯度算法相结合,使用两个神经网络来估计动作值函数和策略,并通过策略梯度更新来优化参数。DDPG 可以处理连续动作空间,但对于高维度的状态空间来说,它的应用也会受到限制。
总的来说,DQN 适用于离散动作空间,DDPG 适用于连续动作空间。如果你的问题是离散动作空间,那么可以使用 DQN,如果问题是连续动作空间,那么可以使用 DDPG。
阅读全文