DSAN的keras代码
时间: 2024-05-09 17:15:37 浏览: 108
以下是一个简单的 DSAN 模型的 Keras 代码实现:
```python
from keras import layers
from keras.models import Model
from keras.optimizers import Adam
def DSAN(input_shape, num_classes):
inputs = layers.Input(shape=input_shape)
# Spatial Attention Module
x1 = layers.Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding="same", activation="relu")(inputs)
x2 = layers.Conv2D(filters=64, kernel_size=(3,3), strides=(2,2), padding="same", activation="relu")(x1)
x3 = layers.Conv2D(filters=64, kernel_size=(3,3), strides=(2,2), padding="same", activation="relu")(x2)
x4 = layers.Conv2D(filters=64, kernel_size=(3,3), strides=(2,2), padding="same", activation="relu")(x3)
# Channel Attention Module
avg_pool = layers.GlobalAveragePooling2D()(x4)
max_pool = layers.GlobalMaxPooling2D()(x4)
a = layers.Dense(units=64, activation='relu')(layers.concatenate([avg_pool, max_pool]))
a = layers.Dense(units=64, activation='sigmoid')(a)
a = layers.Reshape((1,1,64))(a)
x5 = layers.Multiply()([x4, a])
# Classification
x6 = layers.Flatten()(x5)
x6 = layers.Dense(units=256, activation='relu')(x6)
outputs = layers.Dense(units=num_classes, activation='softmax')(x6)
model = Model(inputs, outputs)
model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
return model
```
以上代码实现了 DSAN 模型的网络结构,包括空间注意力模块和通道注意力模块。其中,空间注意力模块包括四个卷积层,每个卷积层的步长为2,用于逐渐减少特征图的大小。通道注意力模块包括两个全连接层和一个 sigmoid 激活函数,用于计算特征图中每个通道的权重。最终,将空间注意力模块和通道注意力模块结合起来,进行分类任务。
阅读全文