fifo分支限界方法解决子集和数问题

时间: 2023-12-21 21:02:17 浏览: 33
FIFO(先进先出)分支限界方法是一种解决子集和数问题的启发式搜索算法。这种方法通过不断地拓展当前最有希望的节点,同时及时剪枝,可以高效地找到问题的最优解。 在使用FIFO分支限界方法解决子集和数问题时,首先将待搜索的节点按照其最有希望的搜索顺序排列成一个先进先出的队列。然后,不断地从队列中取出队首节点进行扩展,生成子节点,并计算它们的上界值(可以通过一些优化策略提前计算上界值以减少计算量)。 接着,将子节点按照其上界值进行排序,并将它们依次加入队列中。在生成子节点的过程中,如果发现某个节点的上界值小于当前最优解,就可以剪枝,即不再拓展该节点。 这样,通过FIFO分支限界方法,可以快速地搜索到子集和数问题的最优解。由于该方法在扩展节点时考虑了最有希望的节点,并及时进行剪枝,因此可以大大提高搜索效率,避免了许多不必要的计算。 总的来说,FIFO分支限界方法是一种高效的解决子集和数问题的算法,可以帮助我们在有限的时间内找到最佳的解决方案。
相关问题

用FIFO分支限界法解决子集和数问题

好的,我来解答你的问题。 首先,让我们来了解一下什么是子集和数问题。给定一组数集合,是否存在一个子集,使得这个子集中的数的和等于一个给定的目标值。这是一个经典的NP完全问题,因此需要使用启发式算法来解决。 FIFO分支限界法是一种基于广度优先搜索的分支限界算法。该算法的基本思想是,将所有可能的解空间分为一系列子集。然后,通过按照某种顺序遍历这些子集,找到一个满足条件的最优解。 下面是使用FIFO分支限界法解决子集和数问题的步骤: 1. 从给定的数集中选取一个数,将其作为根节点。 2. 对于每个根节点,分别添加两个子节点,一个子节点表示选择这个数,另一个子节点表示不选择这个数。 3. 对于每个子节点,计算其对应的子集和数。如果该子集和数小于目标值,则将其添加到队列中,作为下一轮搜索的根节点。 4. 从队列中取出下一个根节点,重复步骤2和3,直到找到一个满足条件的最优解或者队列为空。 使用FIFO分支限界法可以有效地解决子集和数问题,但是其时间复杂度通常比较高,因此需要合理地设置搜索策略和剪枝条件,以提高算法效率。

写出解决如下问题的C++代码:分支限界法解决子集和数的问题 已知n+1个正数:w i ​ (1<=i<=n)和M,要求找出{w i ​ }的所有子集使得子集中元素之和等于M。解采用可变长的k-元组(x 1 ​ ,...,x k ​ ) 表达,其中:x i ​ ∈{1, ..n},表示被选中的数值w的下标,1<=i<=k。隐式约束条件是选中的数值和数为M,x i ​ 相互不同,且按取值从小到大顺序排列。 要求利用FIFO分支限界方法解决子集和数问题。 输入格式: 第一行为一个不超过200的正整数n,表示总集规模; 第二行是正整数M,表示子集的和数; 第三行是总集中n个正整数,中间用空格隔开。 输出格式: 如果有答案,则输出所有满足条件的子集(用可变长度数组表示符合条件的一个子集,子集中元素表示被选中的数值的下标); 如果没有答案,则输出“no solution!”。

以下是使用FIFO分支限界法解决子集和数问题的C++代码: ```c++ #include <iostream> #include <vector> #include <queue> #include <algorithm> using namespace std; const int MAXN = 200; struct Node { int level; // 当前节点所在的层数(即选取的元素个数) int sum; // 当前节点的元素之和 vector<int> choice; // 当前节点的可行解(即选取的元素下标) vector<int> nums; // 剩余可选元素的下标 bool operator<(const Node &rhs) const { return sum < rhs.sum; // 用于FIFO分支限界法中的优先队列排序 } }; int n, m, w[MAXN + 1]; bool visit[MAXN + 1][MAXN * MAXN + 1]; // visit[i][j] 表示选取前 i 个元素,元素之和为 j 是否已经访问过 queue<Node> q; void printSolution(const vector<int> &choice) { cout << "{"; for (int i = 0; i < choice.size(); ++i) { cout << w[choice[i]]; if (i < choice.size() - 1) cout << ", "; } cout << "}" << endl; } void bfs() { Node node = {0, 0, {}, vector<int>(n)}; for (int i = 1; i <= n; ++i) node.nums[i - 1] = i; sort(node.nums.begin(), node.nums.end()); // 初始化可选元素下标为从小到大排序 q.push(node); while (!q.empty()) { node = q.front(); q.pop(); if (node.sum == m) { // 找到一个可行解 printSolution(node.choice); continue; } if (node.level == n) continue; // 所有元素都选完了,无法再扩展节点 int i = node.nums[0]; Node left = node, right = node; left.level = right.level = node.level + 1; left.sum += w[i]; left.choice.push_back(i); left.nums.erase(left.nums.begin()); // 选取第 i 个元素 if (!visit[left.level][left.sum]) { // 判断节点是否已经访问过 visit[left.level][left.sum] = true; q.push(left); // 将左节点插入队列 } right.nums.erase(right.nums.begin()); // 不选取第 i 个元素 if (!visit[right.level][right.sum]) { // 判断节点是否已经访问过 visit[right.level][right.sum] = true; q.push(right); // 将右节点插入队列 } } } int main() { cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> w[i]; bfs(); if (q.empty()) cout << "no solution!" << endl; return 0; } ``` 时间复杂度为$O(2^n)$,其中$n$为总集规模,因为最坏情况下需要枚举所有可能的子集。在实际应用中,可以根据实际情况进行剪枝优化以提高效率。

相关推荐

zip
Android是一种基于Linux内核(不包含GNU组件)的自由及开放源代码的移动操作系统,主要应用于移动设备,如智能手机和平板电脑。该系统最初由安迪·鲁宾开发,后被Google公司收购并注资,随后与多家硬件制造商、软件开发商及电信营运商共同研发改良。 Android操作系统的特点包括: 开放源代码:Android系统采用开放源代码模式,允许开发者自由访问、修改和定制操作系统,这促进了技术的创新和发展,使得Android系统具有高度的灵活性和可定制性。 多任务处理:Android允许用户同时运行多个应用程序,并且可以轻松地在不同应用程序之间切换,提高了效率和便利性。 丰富的应用生态系统:Android系统拥有庞大的应用程序生态系统,用户可以从Google Play商店或其他第三方应用市场下载和安装各种各样的应用程序,满足各种需求。 可定制性:Android操作系统可以根据用户的个人喜好进行定制,用户可以更改主题、小部件和图标等,以使其界面更符合个人风格和偏好。 多种设备支持:Android操作系统可以运行在多种不同类型的设备上,包括手机、平板电脑、智能电视、汽车导航系统等。 此外,Android系统还有一些常见的问题,如应用崩溃、电池耗电过快、Wi-Fi连接问题、存储空间不足、更新问题等。针对这些问题,用户可以尝试一些基本的解决方法,如清除应用缓存和数据、降低屏幕亮度、关闭没有使用的连接和传感器、限制后台运行的应用、删除不需要的文件和应用等。 随着Android系统的不断发展,其功能和性能也在不断提升。例如,最新的Android版本引入了更多的安全性和隐私保护功能,以及更流畅的用户界面和更强大的性能。此外,Android系统也在不断探索新的应用场景,如智能家居、虚拟现实、人工智能等领域。 总之,Android系统是一种功能强大、灵活可定制、拥有丰富应用生态系统的移动操作系统,在全球范围内拥有广泛的用户基础。

最新推荐

recommend-type

装载问题-分支限界算法-java实现

本例采用java编写的装载问题,采用的是FIFO队列形式,参考:算法设计与分析
recommend-type

同步FIFO和异步FIFO的Verilog实现

介绍同步FIFO原理,并且提供了verilog源代码;详细介绍了异步FIFO原理和两种实现方法,并提供verilog源代码。
recommend-type

异步FIFO在FPGA与DSP通信中的运用

利用异步FIFO实现FPGA与DSP进行数据通信的方案。FPGA在写时钟的控制下将数据写入FIFO,再与DSP进行握手后,DSP...经验证,利用异步FIFO的方法,在FPGA与DSP通信中的应用,具有传输速度快、稳定可靠、实现方便的优点。
recommend-type

ALTERA FIFO IP核使用verilog代码

FIFO,在FPGA中是一种非常基本,使用非常广泛的模块。FPGA高手可能觉得不值一提,但对于像我这样的新手,有时却是个大问题,弄了一个多月,总算有所进展,希望把自己的一些总结写下来,一方面希望对其他入门者有所...
recommend-type

dsp--28335的使用fifo的串口中断实验

绍了dsp--28335的使用fifo的串口中断实验设置方式和程序的设计步骤
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。