train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv')对上述mnist数据集进行深度神经网络搭建,标准化和归一化的代码请给出

时间: 2023-07-06 18:26:27 浏览: 34
对MNIST数据集进行深度神经网络搭建时,可以使用以下代码对数据进行标准化和归一化: ```python import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler, MinMaxScaler # 加载数据集 train_data = pd.read_csv('mnist_dataset/mnist_train.csv') test_data = pd.read_csv('mnist_dataset/mnist_test.csv') # 提取特征和标签 X_train, y_train = train_data.iloc[:, 1:].values, train_data.iloc[:, 0].values X_test, y_test = test_data.iloc[:, 1:].values, test_data.iloc[:, 0].values # 标准化 scaler = StandardScaler() X_train_std = scaler.fit_transform(X_train) X_test_std = scaler.transform(X_test) # 归一化 normalizer = MinMaxScaler() X_train_norm = normalizer.fit_transform(X_train) X_test_norm = normalizer.transform(X_test) ``` 首先通过`pd.read_csv`加载MNIST数据集,然后使用`iloc`方法提取特征和标签。接着使用`StandardScaler`对数据进行标准化处理,或者使用`MinMaxScaler`对数据进行归一化处理。最后得到标准化和归一化后的特征数据`X_train_std, X_test_std, X_train_norm, X_test_norm`。

相关推荐

可以优化代码如下: from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels # PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) # 输出因子负荷量 print("PCA降维后的因子负荷量为:") print(pca.components_) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒") 输出结果中包含了PCA降维后的因子负荷量,即pca.components_。
#encoding=utf8 import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import os class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d( in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2, ), nn.ReLU(), nn.MaxPool2d(kernel_size=2), ) self.conv2 = nn.Sequential( nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2), ) self.out = nn.Linear(32 * 7 * 7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.out(x) return output #加载数据 train_data = torchvision.datasets.MNIST( root='/data/workspace/course/step3/mnist', train=True, transform=torchvision.transforms.ToTensor(), download=False, ) #取6000个样本为训练集 train_data_tiny = [] for i in range(6000): train_data_tiny.append(train_data[i]) train_data = train_data_tiny #实例化CNN模型 cnn = CNN() #定义损失函数 loss_func = nn.CrossEntropyLoss() #定义优化器 optimizer = torch.optim.Adam(cnn.parameters(), lr=0.01) #定义数据加载器 train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True) #开始训练 for epoch in range(10): for step, (x, y) in enumerate(train_loader): b_x = Variable(x) b_y = Variable(y) output = cnn(b_x) loss = loss_func(output, b_y) optimizer.zero_grad() loss.backward() optimizer.step() if step % 50 == 0: test_output = cnn(torch.unsqueeze(train_data_tiny[0][0], dim=0)) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() accuracy = sum(pred_y == train_data_tiny[0][1]) / float(train_data_tiny[0][1].shape[0]) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy) #保存模型 torch.save(cnn.state_dict(), '/data/workspace/course/step3/cnn.pkl')
### 回答1: 好的,可以使用以下代码调用cifar-10数据集: python import d2l import torch batch_size = 128 resize = 32 # 加载 CIFAR-10 数据集 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize) 这里,我们使用了 d2l.load_data_cifar10 函数来加载 CIFAR-10 数据集,并将其分成了训练集和测试集。我们还将图像大小调整为 $32\times 32$,并使用了批量大小为 $128$。 ### 回答2: 要将代码中的d2l.load_data_fashion_mnist修改为加载 CIFAR-10 数据集,我们可以使用相同的 d2l 模块中的 load_data_cifar10 函数。我们只需要将 batch_size 参数设置为 128 并加载数据时指定为图像大小为 224。下面是修改后的代码: python import d2l batch_size = 128 train_iter, test_iter = d2l.load_data_cifar10(batch_size, resize=224) 这样,我们就可以使用 CIFAR-10 数据集进行训练和测试了。 ### 回答3: 要将batch_size = 128 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)修改为调用cifar-10数据集,可以按照以下步骤进行修改: 首先,我们需要导入相关的包: import d2l from mxnet import gluon, autograd, init, nd from mxnet.gluon import nn, data as gdata, loss as gloss 然后,我们可以定义一个函数来加载cifar-10数据集: def load_data_cifar10(batch_size, resize=None): """Download the CIFAR-10 dataset and then load it into memory.""" transformer = [] if resize: transformer += [gdata.vision.transforms.Resize(resize)] transformer += [gdata.vision.transforms.ToTensor()] transformer = gdata.vision.transforms.Compose(transformer) mnist_train = gdata.vision.CIFAR10(train=True).transform_first(transformer) mnist_test = gdata.vision.CIFAR10(train=False).transform_first(transformer) return (gdata.DataLoader(mnist_train, batch_size, shuffle=True), gdata.DataLoader(mnist_test, batch_size, shuffle=False)) 接下来,我们可以使用该函数来加载cifar-10数据集: batch_size = 128 train_iter, test_iter = load_data_cifar10(batch_size, resize=224) 以上就是将batch_size = 128 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)修改为调用cifar-10的方法。这样就可以加载cifar-10数据集并设置合适的batch_size和图片大小。

最新推荐

ChatGPT技术在情感计算中的应用.docx

ChatGPT技术在情感计算中的应用

用户最值输出JAVA代码

题目描述: 接收用户输入的3个整数,并将它们的最大值作为结果输出

Java 开发在线考试系统+配置说明+数据库.zip

Java 开发在线考试系统+配置说明+数据库

基于at89c51单片机的-智能开关设计毕业论文设计.doc

基于at89c51单片机的-智能开关设计毕业论文设计.doc

"蒙彼利埃大学与CNRS联合开发细胞内穿透载体用于靶向catphepsin D抑制剂"

由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供于2016年5月26日在评审团面前进行了辩护让·吉隆波尔多大学ARNA实验室CNRS- INSERM教授报告员塞巴斯蒂安·帕波特教授,CNRS-普瓦捷大学普瓦捷介质和材料化学研究所报告员帕斯卡尔·拉斯特洛教授,CNRS-审查员让·马丁内斯蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授审查员文森特·利索夫斯基蒙彼利埃大学Max Mousseron生物分子研究所CNRS教授论文主任让-弗朗索瓦·赫尔南德斯CNRS研究总监-蒙彼利埃大学Max Mousseron生物分子研究论文共同主任由蒙彼利埃大学提供用于靶向catphepsin D抑制剂的细胞内穿透载体的开发在和CNRS研究单位- UMR 5247(马克斯·穆塞隆生物分子研究专长:分子工程由Clément Sanchez提供�

设计一个程序有一个字符串包含n个字符 写一个函数 将此字符串中从第m个字符开始的全部字符复制成为另一个字符串 用指针c语言

以下是用指针实现将字符串中从第m个字符开始的全部字符复制成为另一个字符串的C语言程序: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> void copyString(char *a, char *b, int n, int m); int main() { int n, m; char *a, *b; printf("请输入字符串长度n:"); scanf("%d", &n); a = (char*)malloc(n * sizeof(char)); b =

基于C#多机联合绘图软件的实现-毕业设计论文.doc

基于C#多机联合绘图软件的实现-毕业设计论文.doc

4G车载网络中无线电资源的智能管理

4G车载网络中无线电资源的智能管理汽车网络从4G到5G的5G智能无线电资源管理巴黎萨克雷大学博士论文第580号博士学院博士专业:网络、信息与通信研究单位:巴黎萨克雷大学,UVSQ,LI PARAD,78180,法国伊夫林省圣昆廷参考:凡尔赛大学-伊夫林省圣昆廷论文于11月30日在巴黎萨克雷发表并答辩2021年,由玛丽亚姆·阿卢奇·马迪陪审团组成Pascal Lorenz总裁上阿尔萨斯大学大学教授Mohamed Yacine Ghamri-Doudane拉罗谢尔大学报告员和审查员教授Rami Langar报告员和审查员马恩河谷大学Oyunchimeg SHAGDARVEDECOM研发(HDR)团队负责人审查员论文方向Samir TOHME博士生导师巴黎萨克雷大学名誉教授UVSQ/LI- PARADKALLEL KHEMIRI共同监督巴黎萨克雷UVSQ/大卫Guy Pujolle受邀索邦大学Tara Yahiya邀请巴黎萨克雷大学/LISN高级讲师(HDR)博士论文NNT:2021UPASG061谢谢你首先,我要感谢我的论文导师M.萨米�

mysql建表是的约束

在MySQL中,可以通过约束来保证表中数据的完整性和一致性。常见的约束有主键约束、唯一约束、非空约束和外键约束等。下面是MySQL建表时的约束介绍: 1. 主键约束:主键是一种特殊的唯一约束,它能够唯一确定一张表中的一条记录。在MySQL中,可以通过以下两种方式添加主键约束: ①在创建表时添加主键约束: ```mysql CREATE TABLE user ( id INT PRIMARY KEY, # 添加主键约束 name VARCHAR(20), age INT ); ``` ②在创建表后添加主键约束: ```mysql ALTER TABLE use

XX畜牧有限公司信息化项目实施方案.doc

XX畜牧有限公司信息化项目实施方案.doc