双重注意力机制LSTM代码
时间: 2023-07-11 21:56:14 浏览: 102
MATLAB实现TPA-BiLSTM注意力机制时间序列预测(完整源码和数据)
5星 · 资源好评率100%
以下是一个使用双重注意力机制LSTM的代码示例:
```python
import torch
import torch.nn as nn
class DualAttentionLSTM(nn.Module):
def __init__(self, input_size, hidden_size):
super(DualAttentionLSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.time_attention = nn.Linear(hidden_size, 1)
self.element_attention = nn.Linear(hidden_size, 1)
def forward(self, inputs):
# inputs shape: (sequence_length, batch_size, input_size)
outputs, hidden = self.lstm(inputs)
time_weights = torch.softmax(self.time_attention(outputs), dim=0)
element_weights = torch.softmax(self.element_attention(outputs), dim=1)
# shape of time_weights: (sequence_length, batch_size, 1)
# shape of element_weights: (sequence_length, batch_size, hidden_size, 1)
weighted_outputs = outputs * time_weights * element_weights.squeeze(3)
# sum over the sequence length dimension
final_outputs = torch.sum(weighted_outputs, dim=0)
return final_outputs
```
这个模型使用了PyTorch框架,包括一个LSTM层和两个线性层,用于计算时间注意力和元素注意力。在前向传播中,输入序列通过LSTM层,然后通过时间注意力和元素注意力层进行加权。最后,将加权的输出相加并返回最终输出。
阅读全文