用代码实现粒子群优化算法(PSO)求解车辆路径问题(VRP)。
时间: 2023-10-26 22:04:45 浏览: 263
这里给出一个简单的Python实现粒子群优化算法(PSO)求解车辆路径问题(VRP)的代码示例。假设我们有一些客户需求点和一个仓库,需要用多辆车辆依次访问这些点并回到仓库,最小化总行驶距离。
```python
import random
import math
# 客户需求点和仓库的坐标
locations = [(4, 4), (2, 0), (6, 0), (0, 6), (8, 6), (0, 0), (8, 0), (8, 8)]
# 计算两个点之间的距离
def distance(p1, p2):
return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
# 计算车辆路径的总距离
def total_distance(vehicles):
result = 0
for v in vehicles:
for i in range(len(v) - 1):
result += distance(locations[v[i]], locations[v[i+1]])
return result
# 粒子群优化算法
def pso_vrp(num_vehicles, max_iter):
# 初始化粒子群
num_particles = 20
particles = []
for i in range(num_particles):
vehicles = [[] for _ in range(num_vehicles)]
for j in range(len(locations) - 1):
vehicles[random.randint(0, num_vehicles-1)].append(j+1)
particles.append(vehicles)
# 记录全局最优解
global_best = None
global_best_fitness = float('inf')
# 迭代搜索
for iter in range(max_iter):
for p in particles:
# 计算适应度函数(即车辆路径总距离)
fitness = total_distance(p)
# 更新全局最优解
if fitness < global_best_fitness:
global_best = p
global_best_fitness = fitness
# 更新每个粒子的速度和位置
for p in particles:
for i in range(num_vehicles):
# 计算车辆路径的当前距离
current_distance = total_distance(p)
# 生成随机解
random_solution = [[] for _ in range(num_vehicles)]
for j in range(len(locations) - 1):
random_solution[random.randint(0, num_vehicles-1)].append(j+1)
# 计算随机解的距离
random_distance = total_distance(random_solution)
# 更新速度和位置
for j in range(len(p[i])):
if random.uniform(0, 1) < 0.5:
p[i][j] = global_best[i][j]
else:
p[i][j] = random_solution[i][j]
# 如果新位置更优,则接受新位置
if total_distance(p) < current_distance:
current_distance = total_distance(p)
# 返回全局最优解
return global_best
```
在这个示例中,我们使用了一个简单的随机解来更新粒子的位置和速度。实际上,还可以使用更复杂的启发式规则,以期更快地找到最优解。
阅读全文