Apriori关联分析 matlab代码
时间: 2023-12-23 12:03:15 浏览: 161
apriori关联分析matlab实现
5星 · 资源好评率100%
对于Apriori关联分析的MATLAB代码,可以使用以下代码示例:
```matlab
% 数据集示例
dataset = {'A', 'B', 'C', 'D';
'A', 'C', 'D';
'B', 'D';
'A', 'C', 'E';
'A', 'C', 'D', 'E';
'B', 'C', 'E'};
% 最小支持度阈值
minSupport = 0.4;
% 最小置信度阈值
minConfidence = 0.6;
% 使用Apriori算法进行关联分析
result = RuleFinder(dataset, minSupport, minConfidence);
% 输出关联规则
disp('关联规则:');
for i = 1:length(result)
disp(result(i).rule);
end
function result = RuleFinder(dataset, minSupport, minConfidence)
% 获取所有可能项集
uniqueItems = unique([dataset{:}]);
% 构建初始候选项集
candidateItemsets = num2cell(uniqueItems);
% 计算初始候选项集的支持度
supportCounts = CountSupport(candidateItemsets, dataset);
% 生成频繁项集
frequentItemsets = candidateItemsets(supportCounts >= minSupport);
% 初始化结果
result = struct('rule', [], 'support', [], 'confidence', []);
% 生成关联规则
for i = 1:length(frequentItemsets)
itemset = frequentItemsets{i};
% 生成候选规则
rules = GenerateRules(itemset);
% 计算规则的支持度和置信度
for j = 1:length(rules)
rule = rules{j};
antecedent = rule{1};
consequent = rule{2};
support = CountSupport([antecedent, consequent], dataset);
confidence = support / CountSupport(antecedent, dataset);
% 添加符合条件的关联规则到结果中
if confidence >= minConfidence
result(end+1).rule = rule;
result(end).support = support;
result(end).confidence = confidence;
end
end
end
end
function supportCounts = CountSupport(itemsets, dataset)
supportCounts = zeros(size(itemsets));
for i = 1:length(itemsets)
itemset = itemsets{i};
for j = 1:size(dataset, 1)
if all(ismember(itemset, dataset(j, :)))
supportCounts(i) = supportCounts(i) + 1;
end
end
end
end
function rules = GenerateRules(itemset)
rules = {};
for i = 1:length(itemset)
antecedent = itemset(i);
consequent = setdiff(itemset, antecedent);
if ~isempty(consequent)
rules{end+1} = {antecedent, consequent};
end
end
end
```
这是一个基本的Apriori关联分析的MATLAB代码示例。你可以根据自己的数据集和需求进行相应的修改和调整。
阅读全文