引用transformer的encoder结构写一个encoder+lstm的代码
时间: 2023-11-11 13:07:54 浏览: 82
对于一个encoder lstm,其结构类似于transformer的encoder,但具体实现方式有所不同。以下是一个可能的encoder lstm的代码实现:
```python
import torch
import torch.nn as nn
class EncoderLSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(EncoderLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
def forward(self, x):
# x shape: (batch_size, seq_len, input_size)
# h0 shape: (num_layers, batch_size, hidden_size)
# c0 shape: (num_layers, batch_size, hidden_size)
# Initialize hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# Forward propagate LSTM
out, (hidden, cell) = self.lstm(x, (h0, c0))
# Return output and final hidden and cell states
# out shape: (batch_size, seq_len, hidden_size)
# hidden shape: (num_layers, batch_size, hidden_size)
# cell shape: (num_layers, batch_size, hidden_size)
return out, hidden, cell
```
这个encoder lstm的代码实现包括一个LSTM层,其输入为`x`,输出为`out`,`hidden`和`cell`。其中,`x`的shape为`(batch_size, seq_len, input_size)`,`hidden`和`cell`的shape为`(num_layers, batch_size, hidden_size)`。在forward方法中,我们首先初始化了hidden和cell状态,然后将x和初始化的hidden和cell状态传入LSTM层进行前向传播,最后返回LSTM层的输出和最终的hidden和cell状态。
阅读全文