卡尔曼滤波常加速度模型中,状态向量已有三维坐标、速度、加速度后添加高程范围约束条件JAVA代码计算范例
时间: 2023-12-11 22:05:40 浏览: 73
以下是一个简单的Java代码示例,实现了基于卡尔曼滤波的常加速度模型,并添加了高程范围约束条件:
```
public class KalmanFilter {
private double[] state; // 状态向量 [x, y, z, vx, vy, vz, ax, ay, az]
private double[][] covariance; // 协方差矩阵
private double dt; // 时间步长
private double[] observation; // 观测值
private double[][] observationMatrix; // 观测矩阵
private double[][] processNoise; // 过程噪声矩阵
private double[][] observationNoise; // 观测噪声矩阵
private double[] rangeConstraint; // 高程范围约束条件
public KalmanFilter(double[] initialState, double[][] initialCovariance, double timeStep, double[] observation, double[][] observationMatrix, double[][] processNoise, double[][] observationNoise, double[] rangeConstraint) {
state = initialState;
covariance = initialCovariance;
dt = timeStep;
this.observation = observation;
this.observationMatrix = observationMatrix;
this.processNoise = processNoise;
this.observationNoise = observationNoise;
this.rangeConstraint = rangeConstraint;
}
public void predict() {
// 状态转移矩阵
double[][] stateTransition = {
{1, 0, 0, dt, 0, 0, 0.5*dt*dt, 0, 0},
{0, 1, 0, 0, dt, 0, 0, 0.5*dt*dt, 0},
{0, 0, 1, 0, 0, dt, 0, 0, 0.5*dt*dt},
{0, 0, 0, 1, 0, 0, dt, 0, 0},
{0, 0, 0, 0, 1, 0, 0, dt, 0},
{0, 0, 0, 0, 0, 1, 0, 0, dt},
{0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1}
};
// 预测状态向量
double[] predictedState = Matrix.multiply(stateTransition, state);
// 预测协方差矩阵
double[][] predictedCovariance = Matrix.add(Matrix.multiply(Matrix.multiply(stateTransition, covariance), Matrix.transpose(stateTransition)), processNoise);
// 更新状态向量和协方差矩阵
state = predictedState;
covariance = predictedCovariance;
}
public void update() {
// 计算卡尔曼增益矩阵
double[][] kalmanGain = Matrix.multiply(Matrix.multiply(covariance, Matrix.transpose(observationMatrix)), Matrix.inverse(Matrix.add(Matrix.multiply(Matrix.multiply(observationMatrix, covariance), Matrix.transpose(observationMatrix)), observationNoise)));
// 更新状态向量和协方差矩阵
double[] innovation = Matrix.subtract(observation, Matrix.multiply(observationMatrix, state));
state = Matrix.add(state, Matrix.multiply(kalmanGain, innovation));
covariance = Matrix.multiply(Matrix.subtract(Matrix.identity(9), Matrix.multiply(kalmanGain, observationMatrix)), covariance);
// 添加高程范围约束条件
if (state[2] < rangeConstraint[0]) {
state[2] = rangeConstraint[0];
covariance[2][2] = 1e-6;
} else if (state[2] > rangeConstraint[1]) {
state[2] = rangeConstraint[1];
covariance[2][2] = 1e-6;
}
}
}
```
在上述代码中,我们使用了一个名为 `Matrix` 的工具类,用于处理矩阵运算。你可以根据自己的需要来实现该类。同时,为了简化代码,我们默认状态向量和观测值都是一维的,但是你可以通过修改代码来适应多维情况。
阅读全文